Outline

Introduction: platforms and attacks
Apple i0OS security model

=1 Android security mode
Windows Phone 7/8 security model

Windows Phone 7/8 Security

Secure boot

All binaries are signed

Device encryption

Security model with isolation, capabilities
Support for enterprise policies

Distributing LOB apps (for a specific
enterprise)

Windows Phone 7/8 Security Model

Trusted

Computing Base
(TCB)

Fixed
Permissions.<
Chamber
Types

Elevated
Rights

Standard
Rights

Least Privilege
Chamber (LPC)

Dynamic
Permissions
(LPC)

Policy system

Central repository of rules
3-tuple {Principal, Right, Resource}

Chamber Model

Chamber boundary is security boundary
Chambers defined using policy rules

4 chamber types, 3 fixed size, one can be
expanded with capabilities (LPC)

Capabilities
Expressed in application manifest

Disclosed on Marketplace
Defines app’s security boundary on phone

Overview of Four Chambers

Elevated Rights Chamber (ERC)

Can access all resources except security policy
Intended for services and user-mode drivers

Standard Rights Chamber (SRC)

Default for pre-installed applications that do not
provide device-wide services

Outlook Mobile is an example that runs in the SRC

Least Privileged Chamber (LPC)

Default chamber for all non-Microsoft applications
LPCs configured using capabilities (see next slide)

Overview of Four Chambers

Trusted Computing Base (TCB) chamber
unrestricted access to most resources
can modify policy and enforce the security model.
kernel and kernel-mode drivers run in the TCB

Minimizing the amount of software that runs in the
TCB is essential for minimizing the Windows Phone 7,
8 attack surface

Granting Privileges to Applications

Goal: Least Privilege

Application gets
capabilities needed to
perform all its use cases,
but no more

Developers

Use the capability
detection tool to create
the capability list

The capability list is
included in the
application manifest

Each application
discloses its capabilities
to the user

Listed on Windows
Phone Marketplace

Explicit prompt upon
application purchase
Disclosure within the
application, when the
user is about to use the
location capability for
the first time

WP7 Capabilities

Video and Still capture; Video and Still capture ISV;
Microphone; Location

Services; Sensors; Media Library; Push
Notifications; Web Browser

Component; Add Ringtone; Place Phone Calls;
Owner |ldentity; Phone

ldentity; Xbox LIVE; Interop Services; Networking;
File Viewer; Appointments;

Contacts; Debug; Networking Admin

Example: Code Requires Permission
]

class NativeMethods
{
// This is a call to unmanaged code. Executing this method
// requires the UnmanagedCode security permission. Without
// this permission, an attempt to call this method will throw a
// SecurityException:
[D11Import("msvcrt.dll")]
public static extern int puts(string str);
[D11Import("msvcrt.dll")]

internal static extern int _flushall();

Example: Code Denies Permission Not Needed

[SecurityPermission(SecurityAction.Deny,

Flags = SecurityPermissionFlag.UnmanagedCode)]
private static void MethodToDoSomething()
{ try

{
Console.WriteLine("..");
SomeOtherClass.method();
}

catch (SecurityException)

{

.NET Code Access Security

Default Security Policy is part of the .NET Framework

Default permission for code access to protected resources

Permissions can limit access to system resources.

Use EnvironmentPermission class for environment variables
access permission.

The constructor defines the level of permission (read, write,...)

Deny and Revert

The Deny method of the permission class denies access to the
associated resource

The RevertDeny method will cause the effects of any previous Deny
to be cancelled

.NET Stackwalk

_
- Demand must be satisfied by all callers
Ensures all code in causal chain is authorized
Cannot exploit other code with more privilege

calls
B has P?
Code B
calls K
Demand P

AroundlVie

public static bool AroundMe.App.CheckOptin() {

if (((Option)Enum.Parse(typeof(Option),Config.
order to find locations around you, can it (SettingConstants ° USEMyLocation)) tr‘ue)) == OF
use your location data? return GetCurrentCoordinates();

note: you can change the settings later }
through the settings menu

Use location data?

This app needs to know your location in

if (MessageBox.Show("This app needs ...",

"Use location data?", MessageBoxButtor

== MessageBoxResult.OK)
{

Config.UpdateSetting(new KeyValuePair<string,
(SettingConstants.UseMyLocation,Option.Yes.Tc

return GetCurrentCoordinates();

}

Flashlight XT (version 3.3.0.0)

video and still capture

camera

HD720P (720x1280)

WVGA (480x800)

WXGA (768x1280)

photo, music, and video libraries
microphone

camera

The Problem of Over-permissioning

Flashlight-X (6.6.0.0)

phone identity

owner identity

video and still capture
media playback
microphone

data services

movement and directional
sensor

HD720P (720x1280)

WVGA (480x800)

WXGA (768x1280)

photo, music, and video libraries
camera

compass

Comparison
N

| o | e | wisows
X

Unix X

Windows X
Open market X

Closed market X X
Vendor signed X

Self-signed X X
User approval of permissions X X
Managed code X X
Native code X

Runtime prompts X

Android Security and Privacy

oo m e s s T [T |
! Installed Applications ' | System

I '\ Applications

i o

I AaATATA
Hzlzlzlzhizlzlz

1 | = =} o

1| 2 j=3 =3 T o 2 j=3
Vg I+) [+) g || g o I+)
SRR R O I N

1| o =3 =} e (1] © =] =)

: 3 3 3 3 : " 3 3 3 H
DN GNP G NI S NP N N N
2222 2|2

i| = S = 2 || 2 = 4

__

—
1
1
1 A
]

‘| Bluetooth
E \

Display

GPS
Receiver

Cellular

Radio

[Embedded Linux

[From Enck et al.,

“A Study of Android Application Security”,

USENIX Security 2011.]

Each app runs with its
own user ID

This gives apps a level
of isolation

But this doesn’t
prevent app attacks

Application Permissions

16
- Apps must request - E e e
permissions to access ® Shpe
sensitive resources

Ty I v

INTERN ET, Change Wi-Fi state, disablg keylock,
ACCESS_COARSE_LOCATION, S g e
ACCESS FINE LOCATION, CAMERA, applications, write sync settings
CALL PHONE, READ CALENDAR, * Your location

READ PHON E STATE SEND SMS Coarse (network-based) location
REBOOT, and many more. et e

« Hardware controls
Change your audio settings, record
audio, take pictures and videos

* Your personal information
Read contact data, write contact data

Android Malware and Privacy

Android and Security

Thursday, February 2, 2012 | 12:03 PM
By Hiroshi Lockheimer, VP of Engineering, Android

The last year has been a phenomenal one for the Android ecosystem. Device activations
grew 250% year-on-year, and the total number of app downloads from Android Market topped
11 billion. As the platform continues to grow, we're focused on bringing you the best new
features and innovations - including in security.

Adding a new layer to Android security

Today we're revealing a service we've developed, codenamed Bouncer, which provides
automated scanning of Android Market for potentially malicious software without disrupting
the user experience of Android Market or requiring developers to go through an application
approval process.

The service performs a set of analyses on new applications, applications already in Android
Market, and developer accounts. Here's how it works: once an application is uploaded, the
service immediately starts analyzing it for known malware, spyware and trojans. It also looks
for behaviors that indicate an application might be misbehaving, and compares it against
previously analyzed apps to detect possible red flags. We actually run every application on
Google's cloud infrastructure and simulate how it will run on an Android device to look for
hidden, malicious behavior. We also analyze new developer accounts to help prevent
malicious and repeat-offending developers from coming back.

Android malware downloads are decreasing

The service has been looking for malicious apps in Market for a while now, and between the
first and second halves of 2011, we saw a 40% decrease in the number of potentially-
malicious downloads from Android Market. This drop occurred at the same time that
companies who market and sell anti-malware and security software have been reporting that
malicious applications are on the rise. While it's not possible to prevent bad people from
building malware, the most important measurement is whether those bad applications are
being installed from Android Market - and we know the rate is declining significantly.

~ircumventing Google’s Bouncer, Android’s
inti-malware system

Ryan Whitwam

In response to the increasingly large
target its Android operating system
was presenting to hackers, Google
rolled out the “Bouncer” anti-malware
system in February 2012. Bouncer
was designed to filter out malicious
apps before they ever showed up in
the Android Market, as it was called
at the time. The name changed to

E Google Play, but Bouncer kept

Share This Article chugging along, silently protecting us
from worms and Trojan horses.

[[« @ ¢ .
submit
Google was light on details when it

m L A Submit 84 reddit revealed Bouncer, but now two

security researchers from Duo
ecurity, Charlie Miller and Jon Oberheide, have found a way to remotely access Bouncer
nd explore it from the inside. What they found shows that clever malware authors could
dll trash your phone.

Android Malware Examples

Fake Banking Apps Android.PjappsM

In 2009, while the Android Early in 2010, sly attackers
downloaded legitimate programs

from the Android Market, infected

Market was still in its infancy, a
user known as Droid09

. them with
uploaded several phony online the malware, and
banking apps to lure customers then redistributed the modified
of major banking institutions versions on third-party Android
into entering their online marketplaces.
account logins.
"Informed of this, Google quickly Goal: steal information from infected
removed them," said Robert devices and enroll the device in a
Vamosi, senior analyst at botnet that then launched attacks on

Mocana and author of When websites to steal additional data and

infect more devices. Send costly SMS
Gadgets Betray Us. ! v Y
messages.

http://www.symantec.com/security_response/writeup.jsp?docid=2011-022303-3344-99

Even More Android Malware...

DroidDream (aka,
Android.Rootcager)

Android.Bgserv
Shortly after Google

One of the most nefarious
malware campaigns
addressed in Lookout's
Mobile Threat Report,
DroidDream infected roughly
60 different legitimate apps
in the Android Market and
infected 100Ks of users in
2011.

The malware added infected
devices to a botnet,
breached the Android
security sandboyx, installed
additional software, and
stole data.

deployed a tool for users to
clean up devices infected
with DroidDream, malware
authors got clever

Attackers capitalized on the
hype and released a
malicious fake version of the
cleanup tool.

Known as)
this malware stole device
data, such as the phone's
IMEI number and phone
number, and uploaded it to a
server in China.

http://www.symantec.com/business/security_response/writeup.jsp?docid=2011-031005-2918-99

From the 2014 McAffee Report...

Attack of the Flappy Bird clones

FlappyBird

Once again we see that social engineering, combined with
the latest “hot game,” leads to plentiful malware. The current
infestation is a flock of malevolent “Flappy Bird" clones.

wi b

The original “Flappy Bird” game was released in mid-2013
on Apple 105 and early this year on Android. The game was
a huge success, with more than 50 million downloads, and
brought a great deal of notoriety to developer Dong Nguyen
before he pulled the app from the marketplace in February.

During the last several McAfee Labs Threats Reports,

we have reported on the steep rise in mobile malware.

The Flappy Bird craze and subsequent malware sweep is

a prime example of malware authors taking full advantage
of over-the-top user enthusiasm for legitimate apps or
games. Malicious Flappy Bird clones existed prior its removal
from online marketplaces, but the demand for Flappy Bird-
like games only rose after the app was pulled. During the
first quarter of 2014, we saw hundreds of Flappy Bird clones
emerge, the majority of which were malicious.

00

"FlLy Bird *

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-ql-2014.pdf

More Flappy Birds...

e

Late in the first quarter, McAfee Labs took a sampling of 300 Among its malicious behaviors, this clone does the following:
Flappy Bird clones from our mobile malware “zoo.” Of those

300 samples, we rated 238 samples as malicious. Considering
how quickly these malicious apps popped up, and the number

of times they have been downloaded, the situation is startling. * Allows an app to monitor incoming SMS messages, and to
recaord or process them {(undeclared permission)

= Makes calls without the user's permission
= Installs additional applications without the user's permission

= Sends SMS messages without the user’s permission
What are these malicious apps doing? Apart from taking « Extracts SMS messages

advantage of Flappy Bird as a social engineering lure, they
pack a lot more functionality than the original game. In
fact, they are capable of many questionable, damaging,

* Sends data to a cell number via SMS
= Allows an app to read the user's contacts data (undeclared

. . ; permission)
and invasive behaviors. = Extracts GPS location (latitude and longitude)
When looking at the maliciousness of a mobile application or = Reads IMEI number and MAC address and transmits them
package, certain behaviors raise more red flags than others. to third parties (JSON) without user's permission
The following example illustrates this: com.touch18.flappybird. « Sends user activity data to third-party sites
app (3113ad96fa1b37acb50922ac34f04352) is one of the « Allows an app to call the killBackgroundProcesses(String)

many malicious Flappy Bird clones. (undeclared permission)

How About Malware on a Larger Scale?
I

Financial gain has been the primary motive behind the botnet malware industry for
many years. There is money to be made for the authors of malware, kits, and exploits,
as well as for those who buy them and create their own botnets.

Recently, an additional factor has come into the picture: the commoditization of
virtual currency mining as a core botnet function. We see this functionality being
adopted across popular platforms, including mobile. This emergence is very similar
to past innovations in bots and malware, such as the rise of distributed denial of
service (DDoS) attacks, the persistence of installations, private update mechanisms,
and active detection evasion.

Spend some time digging around any underground security forum or marketplace and
you will find a myriad of SHA-256 and SCRYPT miner botnets, builders, and cracked
versions of commercial builders and kits, along with the usual assortment of DDoS
bots, cryptors, and other nefarious services and tools. Some recent examples include
EnvyMiner, DeadCow, SovietMiner, JHTTP, Black Puppet, and Aura. These are just a
tiny fraction of what exists.

Bitcoin Mining: Computationally Heavy Activity

Bitcoin mining
In traditional fiat money
systems, governments simply

print more money when they
need to

But in bitcoin, money isn’t
printed at all =it is
discovered

Computers around the world
‘mine’ for coins by competing
with each other

Currently, more than 12 million
are in circulation.

A little less than 9 million
bitcoins are waiting to be
discovered (capped at 21 M)

"Mining" is lingo for the
discovery of new bitcoins—just
like finding gold.

In reality, it's simply the
verification of bitcoin
transactions — a computationally
heavy activity.

Some Mining Apps

@% IBM Security Systems

Finding and Fixing Vulnerabilities with AppScan

Automates Application Security Testing

o

Same process for whitebox & blackbox

Scan applications Analyze Report
(identify issues) (detailed & actionable)

25 © 2013 IBM Corporation

vy

#¥ IBM Security Systems

~

Static Analysis ‘ Dynamic Analysis

SAST - Static Application Security DAST — Dynamic Application Security
Testing Testing

“Running” web

Scan input Source code application

Taint analysis &

_ Tampering with HTTP
AR pattern matching P mesgsages
Techniques “code auditing”
Results and Results are presented Results are presented as HTTP
output by line of code messages (exploit requests)

No other vendor provides a broader set of scanning techniques

26 © 2013 IBM Corporation

IEZ Internal and BP Use Only

vy
E, o

\% IBM Security Systems

AppScan Portfolio Overview

\ \
U4
U4
Source / Standard
. U4
client(s) /
4

LT

)/

EERRREEANRR
FEEEERERNRRRNN

Enterprise
Server

Source for

Automation Enterprise

Scanner(s)

27

Internal and BP Use Only

Portfolio Overview

AppScan Standard
Base price 36k — Avg. 50k

*Desktop tool for Dynamic. One scan and
assessment at a time

AppScan Enterprise

Base price 120k — Avg. 200k
*Server solution for Dynamic. Scanners on
servers for parallel scans. Server stores all

assessments for centralized reporting and web
access.

AppScan Source
Base price 100k — Avg. 180k

» Client/Server based solution for Static. Scans
at client or build server and assessments
stored centrally

© 2013 IBM Corporation

Information Leaks
29 |

1 Many apps include o These libraries tend to
advertising or leak user data
analytics libraries
Sent to
10° Resource Demanded Anywhere A&A
T3 3283] IME 83 31 37% | 14 17%
phone_state — e 83 5 6% | 0 0%
10’ 2 location 73 45 62% | 30 41%
4 R contacts 29 7T 24% 0 0%
Ey 173 camera 12 1 8% 0 0%
“Em? 75] account 11 4 36% 0 0%
-qg i logs 10 0 0% 0 0%
z i microphone 10 1 10% | 0 0%
Lo 9] SMS/MMS messages 10 0 0% | 0 0%
5 history&bookmarks 10 0 0% 0 0%
H H calendar 3] 0 0% 0 0%
subscribed_feeds 1 0 0% 0 0%
<l 1 2 3 4 5 6 T 8

Number of ad libraries installed.

[From Shekhar et al., “AdSplit: Separating smartphone advertising from
applications”, USENIX Security 2012.]

Do Users Understand Android Permissions?

“Have you ever not installed an app because of permissions?”

8% 20% 25 interview responses

® Yes

® No
® Probably

From Felt et al.,

“Android Permissions: User Attention,
Comprehension, and Behavior”,
SOUPS 2012.

Many Apps are Over-Permissioned

30.4%

67.3% 2.3%

@® Overprivileged
@ Possible false positives
@ Not overprivileged

[From Felt et al,,
“Android Permissions Demystified”,
CCS 2011.]

20%

15%

10%

5%

0%
1 2 3 4+

Number of extra
permissions

CSE484/CSE584

CLOUD SECURITY

Who Are the Principals?

_ 33|
-1 User(s) - What are the trust

1 Image/VM provider relationships?
- Cloud provider
7 Who else?..

Analysis of Threats on Amazon’s EC2

Instantiated and analyzed secure the image

over five thousand Linux against external attacks
and Windows images secure the image
publicly provided by the against a malicious
Amazon catalog image provider

Check for a wide-range of sanitize the image to
security problems such as prevent users from

the prevalence of extracting and abusing
malware, the quantity of private information left
sensitive data left on oh the disk

such images, and the
privacy risks of sharing an
image on the cloud

Experimental Setup

During our study we had
continuous contact with the
Amazon Web Services Security
Team.

Even though Amazon is not
responsible of what users put
into their images, the team has
been prompt in addressing the
security risks identified and
described in this paper.

Meanwhile, it has published
public bulletins and tutorials to
train users on how to use
Amazon Machine Images (AMIs)
in @ secure way

An AMI can be created from a live
system, a virtual machine image, or
another AMI by copying the file
system contents to the Amazon
Simple Storage Service (S3) in a
process called bundling.

Public images may be available for
free, or may be associated with a
product code that allows companies
to bill an additional usage cost via
the Amazon DevPay payment
service.

Thus, some of these public
machines are provided by
companies, i.e. SalesForce or Oracle

Images Are Old and Vulnerable

Software running on
each AMIs is often out
of date and, therefore,
must be immediately
updated by the user
after the image is
instantiated

From our analysis, 98%
of Windows AMIs and
58% of Linux AMIs
contain software with
critical vulnerabilities.

This observation was
not typically restricted
to a single application
but involved multiple
services: an average of
46 for Windows and 11
for Linux images

Malware in the Image

Discovered two Windows-
based infected images.

The first machine was
infected with a Trojan-Spy
malware (variant 50112).

This Trojan has a wide
range of capabilities: key
logging, monitoring
processes on the
computer, and stealing
data

Observed several images
that opened connections
to various web
applications within and
outside of Amazon EC2

discovered two AMls in
which the

syslog daemon was
configured to send the log
messages to a remote
host, out of the control of
the user instantiating the
image.

Backdoors

When a user rents an AMI, she
is required to provide the public
part of the her ssh key that it is
then stored by Amazon in the
authorized_keys in the home
directory.

The first problem with this
process is that a user who is
malicious and does not remove
her public key from the image
before making it public could
login into any running instance
of the AMI.

The existence of these kinds of
potential backdoors is known by
Amazon since the beginning of
April 2011

Leftover ssh keys only allow
people with the corresponding
private key, to obtain access to
the instance

ssh server permits password-
based authentication, thus
providing a similar backdoor
functionality if the AMI provider
does not remove her passwords
from the machine.

Passwords provide a larger
attack vector: anybody can
extract the password hashes
from an AMI

Private Info

Our system was able to
identify 67 Amazon API
keys, and 56 private SSH
keys that were forgotten.

The APl keys were mostly
not password protected
and, therefore, can
immediately be used to
start images on the cloud
at the expense of the
key’s owner.

Browser history found
9 AMIs contained history files

Reveal information about image
creator

History files can easily be
used to de-anonymize, and
reveal information about
the image’s creator.

Shell history: ~/.history
~/.bash_history,
~/.sh_history, etc.

Recovering Files

extundelete and
Winundelete to
attempt to recover
previously deleted files

. Type i
Able to recover files for Home fles (/hons, /zoot) 33,011
Images (min. 800x600) 1,085
98% Of the AM IS (from ad Microsoft Office documents 336
. . Amazon AWS certificates and access keys 293
minimum of 6 to a SSH private keys 232
. f th PGP/GPG private keys 151
PDF documents 141
Mmaximum of more dn Password file (/etc/shadow) 106

40,000 files per AMI).

In total, 28.3GB of data
(i.e., an average of
24MB per AMI)

Recovered data from deleted files

Amazon’s Response

Amazon has a dedicated Amazon immediately verified and
group dealing with the acknowledged the problem, and
security issues of their cloud contacted all the affected

computing infrastructure: the
AWS (Amazon Web Services)
Security Team.

The security team reacted
quickly, and released a
tutorial within five days to
help customers share public
images in a secure mannetr.

Contacted again Amazon on
June 24th about the
possibility of recovering
deleted data from the public
Amazon AMIs

customers as summarized by a
public bulletin released on June
4th

Tutorial

[How To Share and Use Public AMIs in A Secure Manner
Articles & Tutorials = How To Share and Use Public AMIs in A Secure Manner
When using &mazon Machine Images (&MI's) it is important to remember to use proper precautions to ensure that

private information is not inadvertently left on AMI's when shared publicly. This tutorial is provided to help
customers share public Amazon Machine Images (AMIs) in a secure manner.

Details

Submitted By: aws-security@amazon.com
AWS Products Used: Amazon EC2
Created On: June 7, 2011 3:45 AM GMT

Last Updated: September 7, 2011 12:46 AM GMT

How To Share and Use Public AMIs in A Secure Manner

When using &mazon Machine Images (4MI's) it is important to remember to use proper precautions to ensure that
private information is not inadvertently left on AMI's when shared publicly. This tutorial is provided to help
customers share public Amazon Machine Images (AMIs) in a secure manner.

This tutorial expands upon the basic instructions within the "Sharing AMIs Safely” section of the EC2 User's Guide,
which can be found at http://docs.amazonwebservices.com/AWSEC2/Iatest/UserGuide/AESDG-chapter-
sharingamis.html. The EC2 User's Guide and this tutarial cover the most common security concerns with sharing
public AMI. They should not be used as a complete security assessment guide.

For information on hardening and clean-up requirements, go to Public AMI Publishing: Hardening and Clean-up
Requirements, which is available at https://aws.amazon.com/articles/2001172542712674.

Additional security guidance is provided for users of public AMIs, as well as instructions for what to do should you
discover an AMI that has security concerns.

Sharing Public AMIs in A More Secure Manner

We recommend against storing sensitive data or software on any AMI that you share. Below, are expanded
guidelines to help you to avoid some easily overlooked security risks.

Always delete the shell history before creating your AML. The shell history may contain your secret access key or
other private info that are not intended to be shared with users of your AMI. As an example, the following
command can help locate the root user and other users' shell history files on disk and delete them, when run as
root:

Ensure that your private credentials for third-party applications and remote services are deleted, such as the
username and password for any remote database you might have stored locally, or perhaps the credentials for a
remote source code repaository you have used recently. As an example, the following commands can help locate
CVS and subversion information you may not wish to share publicly:

find /root/ /home/*/ -name .cvapass -exec rm - {] \;
find /root/.subversion/auth/svn.simple/ /home/*/.subversion/auth/svn.simple/ -exec rm -rf {} \::

Using Public AMIs in A More Secure Manner

For users of public AMIs, particular attention should alsa be paid to ensure that there are no pre-installed
credentials, such as public SSH keys or default usernames and passwords, which could allow unwanted third-
party access to vour running EC2 instances, or preconfigured remote logaing hosts which could result in sensitive
system and application logging data being transmitted to unauthorized recipients.

At @ minimum, we recammend that users of public AMIs identify and disable unauthorized public 55H keys. To do
s0, vou will need to remove any unrecognized keys from your running instance(s). Mote that public SSH keys are
not guaranteed to be in the '/root/.ssh/authorized_keys' file. As an example, the following command will help
locate "authorized_keys" files on disk, when run as root:

find / -name "authorized keys"™ -print -exec cat [} \; 1

This command will generate a list of all known "authorized_keys” files, which you can then individually edit to
remove any unrecognized keys from each of the identified files. To ensure that you do not inadvertently remove
YOUR authorized keys, we recommend that you initiate two SSH sessions when starting this process for each
instance. You should keep the second session open until you have confirmed that all unrecognized / unauthaorized
keys are removed and that you still have S5H login access to the instance using yvour authorized key.

If you do not use SSH to connect to your Amazon ECZ instances, we recommend that you check the security
groups associated with the above instance(s) to ensure that port 22 inbound is closed to all unknown IPs. This
can be done via the AWS Management Console. For detailed instructions, please check the "Using Security
Groups” section of the Amazon EC2 User guide:

http ocs.amazonwebservices.com/AWSEC2/latest/UserGuide/using-network-security.html

You should find and remove any default usernames and passwords that could result in unauthaorized access to
your instance.As an example, the following command can help find usernames and passwaords:

3 cat fetc/passwd fetc/shadow | grep -E "~[~:]#*:[*~:]{3,]}" | cut -d: -fl E

