
Outline

 Introduction: platforms and attacks

 Apple iOS security model

 Android security model

 Windows Phone 7/8 security model

Windows Phone 7/8 Security

 Secure boot

 All binaries are signed

 Device encryption

 Security model with isolation, capabilities

 Support for enterprise policies

 Distributing LOB apps (for a specific
enterprise)

Windows Phone 7/8 Security Model

Central repository of rules
3-tuple {Principal, Right, Resource}

Chamber boundary is security boundary
Chambers defined using policy rules
4 chamber types, 3 fixed size, one can be
expanded with capabilities (LPC)

Expressed in application manifest
Disclosed on Marketplace
Defines app’s security boundary on phone

Overview of Four Chambers

 Elevated Rights Chamber (ERC)

 Can access all resources except security policy

 Intended for services and user-mode drivers

 Standard Rights Chamber (SRC)

 Default for pre-installed applications that do not
provide device-wide services

 Outlook Mobile is an example that runs in the SRC

 Least Privileged Chamber (LPC)

 Default chamber for all non-Microsoft applications

 LPCs configured using capabilities (see next slide)

Overview of Four Chambers

 Trusted Computing Base (TCB) chamber

 unrestricted access to most resources

 can modify policy and enforce the security model.

 kernel and kernel-mode drivers run in the TCB

 Minimizing the amount of software that runs in the
TCB is essential for minimizing the Windows Phone 7,
8 attack surface

Granting Privileges to Applications

 Goal: Least Privilege
 Application gets

capabilities needed to
perform all its use cases,
but no more

 Developers
 Use the capability

detection tool to create
the capability list

 The capability list is
included in the
application manifest

 Each application
discloses its capabilities
to the user
 Listed on Windows

Phone Marketplace
 Explicit prompt upon

application purchase
 Disclosure within the

application, when the
user is about to use the
location capability for
the first time

WP7 Capabilities
7

 Video and Still capture; Video and Still capture ISV;
Microphone; Location

 Services; Sensors; Media Library; Push
Notifications; Web Browser

 Component; Add Ringtone; Place Phone Calls;
Owner Identity; Phone

 Identity; Xbox LIVE; Interop Services; Networking;
File Viewer; Appointments;

 Contacts; Debug; Networking Admin

Example: Code Requires Permission

class NativeMethods

{

// This is a call to unmanaged code. Executing this method

// requires the UnmanagedCode security permission. Without

// this permission, an attempt to call this method will throw a

// SecurityException:

[DllImport("msvcrt.dll")]

public static extern int puts(string str);

[DllImport("msvcrt.dll")]

internal static extern int _flushall();

}

Example: Code Denies Permission Not Needed

[SecurityPermission(SecurityAction.Deny,

Flags = SecurityPermissionFlag.UnmanagedCode)]

private static void MethodToDoSomething()

{ try

{

Console.WriteLine("…");

SomeOtherClass.method();

}

catch (SecurityException)

{

…

}

}

.NET Code Access Security

 Default Security Policy is part of the .NET Framework

 Default permission for code access to protected resources

 Permissions can limit access to system resources.

 Use EnvironmentPermission class for environment variables
access permission.

 The constructor defines the level of permission (read, write,…)

 Deny and Revert

 The Deny method of the permission class denies access to the
associated resource

 The RevertDeny method will cause the effects of any previous Deny
to be cancelled

calls

.NET Stackwalk

 Demand must be satisfied by all callers

 Ensures all code in causal chain is authorized

 Cannot exploit other code with more privilege

Code B

Code C Demand P

B has P?

A has P?

calls

Code A

AroundMe

12

public static bool AroundMe.App.CheckOptin() {
if (((Option)Enum.Parse(typeof(Option),Config.GetSetting
(SettingConstants.UseMyLocation),true)) == Option.Yes
return GetCurrentCoordinates();
}
if (MessageBox.Show("This app needs ...",

"Use location data?", MessageBoxButton.OKCancel
== MessageBoxResult.OK)

{
Config.UpdateSetting(new KeyValuePair<string,string
(SettingConstants.UseMyLocation,Option.Yes.ToString

return GetCurrentCoordinates();
}
...
}

The Problem of Over-permissioning

 Flashlight XT (version 3.3.0.0)
 video and still capture

 camera

 HD720P (720x1280)

 WVGA (480x800)

 WXGA (768x1280)

 photo, music, and video libraries

 microphone

 camera

 Flashlight-X (6.6.0.0)
 phone identity

 owner identity

 video and still capture

 media playback

 microphone

 data services

 movement and directional
sensor

 HD720P (720x1280)

 WVGA (480x800)

 WXGA (768x1280)

 photo, music, and video libraries

 camera

 compass

13

Comparison

iOS Android Windows

Unix x x

Windows x

Open market x

Closed market x x

Vendor signed x

Self-signed x x

User approval of permissions x x

Managed code x x

Native code x

Runtime prompts x

Android Security and Privacy

 Each app runs with its
own user ID

 This gives apps a level
of isolation

 But this doesn’t
prevent app attacks

15

[From Enck et al.,
“A Study of Android Application Security”,
USENIX Security 2011.]

Application Permissions

 Apps must request
permissions to access
sensitive resources

16

Android Malware and Privacy
17

Android Malware Examples

 Fake Banking Apps

 In 2009, while the Android

Market was still in its infancy, a

user known as Droid09

uploaded several phony online

banking apps to lure customers

of major banking institutions

into entering their online

account logins.

 "Informed of this, Google quickly

removed them," said Robert

Vamosi, senior analyst at

Mocana and author of When

Gadgets Betray Us.

 Android.PjappsM

 Early in 2010, sly attackers

downloaded legitimate programs

from the Android Market, infected

them with

the Android.Pjapps malware, and

then redistributed the modified

versions on third-party Android

marketplaces.

 Goal: steal information from infected

devices and enroll the device in a

botnet that then launched attacks on

websites to steal additional data and

infect more devices. Send costly SMS

messages.

18

http://www.symantec.com/security_response/writeup.jsp?docid=2011-022303-3344-99

Even More Android Malware…

 DroidDream (aka,
Android.Rootcager)
 One of the most nefarious

malware campaigns
addressed in Lookout's
Mobile Threat Report,
DroidDream infected roughly
60 different legitimate apps
in the Android Market and
infected 100Ks of users in
2011.

 The malware added infected
devices to a botnet,
breached the Android
security sandbox, installed
additional software, and
stole data.

 Android.Bgserv
 Shortly after Google

deployed a tool for users to
clean up devices infected
with DroidDream, malware
authors got clever

 Attackers capitalized on the
hype and released a
malicious fake version of the
cleanup tool.

 Known as Android.Bgserv,
this malware stole device
data, such as the phone's
IMEI number and phone
number, and uploaded it to a
server in China.

19

http://www.symantec.com/business/security_response/writeup.jsp?docid=2011-031005-2918-99

From the 2014 McAffee Report…
20

http://www.mcafee.com/us/resources/reports/rp-quarterly-threat-q1-2014.pdf

More Flappy Birds…
21

How About Malware on a Larger Scale?
22

Bitcoin Mining: Computationally Heavy Activity

 Bitcoin mining

 In traditional fiat money
systems, governments simply
print more money when they
need to

 But in bitcoin, money isn’t
printed at all – it is
discovered

 Computers around the world
‘mine’ for coins by competing
with each other

 Currently, more than 12 million
are in circulation.

 A little less than 9 million
bitcoins are waiting to be
discovered (capped at 21M)

 "Mining" is lingo for the
discovery of new bitcoins—just
like finding gold.

 In reality, it's simply the
verification of bitcoin
transactions – a computationally
heavy activity.

23

Some Mining Apps
24

IBM Security Systems

25 © 2013 IBM Corporation

Scan applications Analyze

(identify issues)

Automates Application Security Testing

Report

(detailed & actionable)

Finding and Fixing Vulnerabilities with AppScan

Same process for whitebox & blackbox

Fix

IBM Security Systems

26 © 2013 IBM Corporation

Scanning Techniques 101

Static Analysis Dynamic Analysis

Results and
output

Results are presented as HTTP

messages (exploit requests)

Results are presented

by line of code

Assessment
Techniques

Taint analysis &

pattern matching

“code auditing”

Tampering with HTTP

messages

Scan input Source code
“Running” web

application

Who uses it Application developers
Development, QA, Security,

Deployment

SAST - Static Application Security

Testing

DAST – Dynamic Application Security

Testing

No other vendor provides a broader set of scanning techniques

IBM Security Systems

27 © 2013 IBM Corporation

AppScan Portfolio Overview
Portfolio Overview

AppScan Standard
Base price 36k – Avg. 50k

•Desktop tool for Dynamic. One scan and

assessment at a time

AppScan Enterprise
Base price 120k – Avg. 200k

•Server solution for Dynamic. Scanners on

servers for parallel scans. Server stores all

assessments for centralized reporting and web

access.

AppScan Source
Base price 100k – Avg. 180k

• Client/Server based solution for Static. Scans

at client or build server and assessments

stored centrally

Enterprise

Server

Source

client(s)

Source for

Automation Enterprise

Scanner(s)

Standard

A lot of academic interest…28

Information Leaks

 Many apps include
advertising or
analytics libraries

29

[From Shekhar et al., “AdSplit: Separating smartphone advertising from
applications”, USENIX Security 2012.]

 These libraries tend to
leak user data

Do Users Understand Android Permissions?

30

From Felt et al.,
“Android Permissions: User Attention,

Comprehension, and Behavior”,
SOUPS 2012.

Many Apps are Over-Permissioned
31

[From Felt et al.,
“Android Permissions Demystified”,
CCS 2011.]

CSE484/CSE584

CLOUD SECURITY

Dr. Benjamin Livshits

Who Are the Principals?

 User(s)

 Image/VM provider

 Cloud provider

 Who else?..

 What are the trust
relationships?

33

Analysis of Threats on Amazon’s EC2

 Instantiated and analyzed
over five thousand Linux
and Windows images
publicly provided by the
Amazon catalog

 Check for a wide-range of
security problems such as
the prevalence of
malware, the quantity of
sensitive data left on
such images, and the
privacy risks of sharing an
image on the cloud

1. secure the image
against external attacks

2. secure the image
against a malicious
image provider

3. sanitize the image to
prevent users from
extracting and abusing
private information left
on the disk

34

Experimental Setup

 During our study we had
continuous contact with the
Amazon Web Services Security
Team.

 Even though Amazon is not
responsible of what users put
into their images, the team has
been prompt in addressing the
security risks identified and
described in this paper.

 Meanwhile, it has published
public bulletins and tutorials to
train users on how to use
Amazon Machine Images (AMIs)
in a secure way

 An AMI can be created from a live
system, a virtual machine image, or
another AMI by copying the file
system contents to the Amazon
Simple Storage Service (S3) in a
process called bundling.

 Public images may be available for
free, or may be associated with a
product code that allows companies
to bill an additional usage cost via
the Amazon DevPay payment
service.

 Thus, some of these public
machines are provided by
companies, i.e. SalesForce or Oracle

35

Images Are Old and Vulnerable

 Software running on
each AMIs is often out
of date and, therefore,
must be immediately
updated by the user
after the image is
instantiated

 From our analysis, 98%
of Windows AMIs and
58% of Linux AMIs
contain software with
critical vulnerabilities.

 This observation was
not typically restricted
to a single application
but involved multiple
services: an average of
46 for Windows and 11
for Linux images

36

Malware in the Image

 Discovered two Windows-
based infected images.

 The first machine was
infected with a Trojan-Spy
malware (variant 50112).

 This Trojan has a wide
range of capabilities: key
logging, monitoring
processes on the
computer, and stealing
data

 Observed several images
that opened connections
to various web
applications within and
outside of Amazon EC2

 discovered two AMIs in
which the

 syslog daemon was
configured to send the log
messages to a remote
host, out of the control of
the user instantiating the
image.

37

Backdoors

 When a user rents an AMI, she
is required to provide the public
part of the her ssh key that it is
then stored by Amazon in the
authorized_keys in the home
directory.

 The first problem with this
process is that a user who is
malicious and does not remove
her public key from the image
before making it public could
login into any running instance
of the AMI.

 The existence of these kinds of
potential backdoors is known by
Amazon since the beginning of
April 2011

 Leftover ssh keys only allow
people with the corresponding
private key, to obtain access to
the instance

 ssh server permits password-
based authentication, thus
providing a similar backdoor
functionality if the AMI provider
does not remove her passwords
from the machine.

 Passwords provide a larger
attack vector: anybody can
extract the password hashes
from an AMI

38

Private Info

 Our system was able to
identify 67 Amazon API
keys, and 56 private SSH
keys that were forgotten.



 The API keys were mostly
not password protected
and, therefore, can
immediately be used to
start images on the cloud
at the expense of the
key’s owner.

 Browser history found
 9 AMIs contained history files

 Reveal information about image
creator

 History files can easily be
used to de-anonymize, and
reveal information about
the image’s creator.

 Shell history: ∼/.history
∼/.bash_history,
∼/.sh_history, etc.

39

Recovering Files

 extundelete and
Winundelete to
attempt to recover
previously deleted files

 Able to recover files for
98% of the AMIs (from a
minimum of 6 to a
maximum of more than
40,000 files per AMI).

 In total, 28.3GB of data
(i.e., an average of
24MB per AMI)

40

Amazon’s Response

 Amazon has a dedicated
group dealing with the
security issues of their cloud
computing infrastructure: the
AWS (Amazon Web Services)
Security Team.

 The security team reacted
quickly, and released a
tutorial within five days to
help customers share public
images in a secure manner.

 Contacted again Amazon on
June 24th about the
possibility of recovering
deleted data from the public
Amazon AMIs

 Amazon immediately verified and
acknowledged the problem, and
contacted all the affected
customers as summarized by a
public bulletin released on June
4th

41

Tutorial
42

