
Tadayoshi Kohno

CSE 484 / CSE M 584 (Winter 2013)

Android and Anonymity

Thanks to Vitaly Shmatikov, Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Bennet Yee, and many others for sample slides and

materials ...

Goals for Today

 Lab 3 discussion
 Android
 Anonymity

 HW 3 now out (due Friday)
 Lab 3 out just now

Mobile Device Security (Android)

Android
• Based on Linux
• Layers:

– Android Application Runtime (generally written in Java, run in
the Dalvik virtual machine; sometimes native applications or
native libraries)

– Android OS
– Device Hardware

• Applications
– Pre-installed
– User-installed

• Via app stores
• Via over the air (OTA) updates.

Android Software Stack

http://source.android.com/tech/security/index.html

Application Sandboxes

Based on Linux: Has clear notion of users and
permissions

Each application
• Assigns unique user ID (UID)
• Runs as that user in a separate process
• Different than traditional operating systems

where multiple applications run with the same user
permissions

Application Sandboxes (II)

Desktop browser sandbox: language specific
Android sandbox: baked into the OS, via the kernel

• No restriction on how applications are written
• Native code
• Java code

Conventional systems: memory corruption errors
lead to complete compromise

Android: memory corruption errors only lead to
arbitrary code execution in the context of the
particular compromised application

 (Can still escape sandbox -- but must compromise
Linux kernel to do so)

File permissions

Files written by one application cannot be read by
other applications
• Not true for files stored on the SD card

 It is possible to do full filesystem encryption
• Key = Password combined with salt, hashed with SHA1

using PBKDF2.

Memory Management

Address Space Layout Randomization to
randomize addresses on stack

Hardware-based No eXecute (NX) to prevent code
execution on stack/heap

Stack guard derivative
Some defenses against double free bugs (based

on OpenBSD’s dmalloc() function)
 ...
(See http://source.android.com/tech/security/

index.html)

Applications

Activity: Code for single, user-focused task
Services: Code that runs in the background
Broadcast Receiver: Receive Intents (messages

from other applications)

AndroidManifest.xml
• Overall information about application (activities,

services, ...)
• Also specifies which permissions are required by

applications

Permissions / Manifests

http://source.android.com/tech/security/index.html

Permissions

Example permissions
• Camera
• Location (GPS)
• Bluetooth
• SMS functions
• Network capabilities

Cannot grant / deny individual permissions
Once accepted, users not notified of permissions

again
Security exception thrown if attempt to access

resource not declared in manifest

Obtaining User Consent for
Permissions

 General options:
• At install time (manifests)
• At time of use (prompts)

 Why manifests
• Users are evaluating the application, the developers, etc, to see if

they want the app
• Prompts slow down user; hinder user experience
• Users may just say “OK” to all dialogs without reading them

 Why prompts
• At time of resource access
• Opportunity for user to be more in control of actual resource use

(app with GPS permissions should only actually access the GPS
when the user wishes -- but can’t tell with manifest model)

 (Alternative: User-driven access control, Roesner et al (2012))

Application Signing

Apps are signed
• Often with self-signed certificates

Signed application certificate defines which user
ID is associated with which applications
• Different apps run under different UIDs

Shared UID feature
• Shared Application Sandbox possible, where two or

more apps signed with same developer key can declare
a shared UID in their manifest

Shared UIDs

App 1: Requests GPS / camera access
App 2: Requests Network capabilities

Generally:
• First app can’t exfiltrate information
• Second app can’t exfiltrate anything interesting

With Shared UIDs (signed with same private key)
• Permissions are a superset of permissions for each app
• App 1 can now exfiltrate; App 2 can now access GPS /

camera

Questions

Q1: How might malware authors get malware
onto phones?

Q2: What are some goals that mobile device
malware authors might have?

Q3: What technical things might malware authors
do?

Malware

Legitimacy of apps
• Self-signing means that signers can claim to be

whoever they wish
 Installation vector

• (Seems to be) “drive-by-downloads” and exploits for
infection, and more social engineering (tricking users to
install)

• E.g., “sideloading” sites: distribute pirated versions of
popular applications, which can be decompiled and
modified to include malicious behavior

• Utilities, games, adult-oriented apps [Lookout Mobile
Threat Report, August 2011]

Malware techniques

Add background Service
Modify existing application source code
Component library replacement

To avoid basic signature detection:
• Dynamically download new Dalvik bytecode
• Use DexClassLoader API to run the downloaded code

Use exploit to obtain root access
Many other techniques

Malware Functions

 Make a profit
• Premium number dialers
• Aggressive adware
• Data collection (obtain personally-identifiable information that can be

sold)
• Banking trojans (e.g., FakeToken.A to bypass two-factor authentication)

 Bot clients (phone have limited resources, so more useful as a
mechanisms to support other goals, e.g., later targeted data
collection)
• Internet C&C
• SMS C&C

 Privileged Operations Trojans (obtain root)
 Disruptive Trojans (denial of service, destroy data)

• Not stealthy; no profit

Privacy on Public Networks

 Internet is designed as a public network
• Machines on your LAN may see your traffic, network

routers see all traffic that passes through them
Routing information is public

• IP packet headers identify source and destination
• Even a passive observer can easily figure out who is

talking to whom
Encryption does not hide identities

• Encryption hides payload, but not routing information
• Even IP-level encryption (tunnel-mode IPSec/ESP)

reveals IP addresses of IPSec gateways

Questions

Q1: Why might people want anonymity on the
Internet?

Q2: Why might people not want anonymity on
the Internet?

Questions

Q1: How might one go about trying to obtain
anonymity? What technical approaches might we
use?

Q2: How might one go about trying to violate
someone else’s anonymity?

Applications of Anonymity

Privacy
• Hide online transactions, Web browsing, etc. from

intrusive governments, marketers and archivists
Untraceable electronic mail

• Corporate whistle-blowers
• Political dissidents
• Socially sensitive communications (online AA meeting)
• Confidential business negotiations

Law enforcement and intelligence
• Sting operations and honeypots
• Secret communications on a public network

Applications of Anonymity (II)

Digital cash
• Electronic currency with properties of paper money

(online purchases unlinkable to buyer’s identity)
Anonymous electronic voting
Censorship-resistant publishing

What is Anonymity?

Anonymity is the state of being not identifiable
within a set of subjects
• You cannot be anonymous by yourself!

– Big difference between anonymity and confidentiality

• Hide your activities among others’ similar activities
Unlinkability of action and identity

• For example, sender and the email he or she sends are no
more related after observing communication than they
were before

Unobservability (hard to achieve)

Chaum’s Mix

Early proposal for anonymous email
• David Chaum. “Untraceable electronic mail, return

addresses, and digital pseudonyms”. Communications
of the ACM, February 1981.

Public key crypto + trusted re-mailer (Mix)
• Untrusted communication medium
• Public keys used as persistent pseudonyms

Modern anonymity systems use Mix as the basic
building block

Before spam, people thought anonymous
email was a good idea J

Basic Mix Design

A

C

D

E

B

Mix

{r1,{r0,M}pk(B),B}pk(mix)
{r0,M}pk(B),B

{r2,{r3,M’}pk(E),E}pk(mix)

{r4,{r5,M’’}pk(B),B}pk(mix)

{r5,M’’}pk(B),B

{r3,M’}pk(E),E

Adversary knows all senders and
all receivers, but cannot link a sent
 message with a received message

Anonymous Return Addresses

A

B
MIX

{r1,{r0,M}pk(B),B}pk(mix) {r0,M}pk(B),B

M includes {K1,A}pk(mix), K2 where K2 is a fresh public key

Response MIX

{K1,A}pk(mix), {r2,M’}K2
A,{{r2,M’}K2}K1

Mix Cascade

Messages are sent through a sequence of mixes
• Can also form an arbitrary network of mixes (“mixnet”)

Some of the mixes may be controlled by attacker,
but even a single good mix guarantees anonymity

Pad and buffer traffic to foil correlation attacks

Disadvantages of Basic Mixnets

Public-key encryption and decryption at each mix are
computationally expensive

Basic mixnets have high latency
• Ok for email, not Ok for anonymous Web browsing

Challenge: low-latency anonymity network
• Use public-key cryptography to establish a “circuit” with

pairwise symmetric keys between hops on the circuit
• Then use symmetric decryption and re-encryption to move

data messages along the established circuits
• Each node behaves like a mix; anonymity is preserved

even if some nodes are compromised

Another Idea: Randomized Routing

Hide message source by routing it randomly
• Popular technique: Crowds, Freenet, Onion routing

Routers don’t know for sure if the apparent source of
a message is the true sender or another router

Onion Routing

R R4

R1
R2

R

RR3

Bob

R

R

R

Sender chooses a random sequence of routers
• Some routers are honest, some controlled by attacker
• Sender controls the length of the path

[Reed, Syverson, Goldschlag ’97]

Alice

Route Establishment

R4

R1

R2 R3 BobAlice

{R2,k1}pk(R1),{ }k1

{R3,k2}pk(R2),{ }k2

{R4,k3}pk(R3),{ }k3

{B,k4}pk(R4),{ }k4

{M}pk(B)

• Routing info for each link encrypted with router’s public key
• Each router learns only the identity of the next router

Tor

Second-generation onion routing network
• http://tor.eff.org
• Developed by Roger Dingledine, Nick Mathewson and

Paul Syverson
• Specifically designed for low-latency anonymous Internet

communications
Running since October 2003
“Easy-to-use” client proxy

• Freely available, can use it for anonymous browsing

Tor Circuit Setup (1)

Client proxy establish a symmetric session key and
circuit with Onion Router #1

Tor Circuit Setup (2)

Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #2
• Tunnel through Onion Router #1 (don’t need)

Tor Circuit Setup (3)

Client proxy extends the circuit by establishing a
symmetric session key with Onion Router #3
• Tunnel through Onion Routers #1 and #2

Using a Tor Circuit

Client applications connect and communicate over
the established Tor circuit

Tor Management Issues

Many applications can share one circuit
• Multiple TCP streams over one anonymous connection

Tor router doesn’t need root privileges
• Encourages people to set up their own routers
• More participants = better anonymity for everyone

Directory servers
• Maintain lists of active onion routers, their locations,

current public keys, etc.
• Control how new routers join the network

– “Sybil attack”: attacker creates a large number of routers

• Directory servers’ keys ship with Tor code

Attacks on Anonymity

Passive traffic analysis
• Infer from network traffic who is talking to whom
• To hide your traffic, must carry other people’s traffic!

Active traffic analysis
• Inject packets or put a timing signature on packet flow

Compromise of network nodes
• Attacker may compromise some routers
• It is not obvious which nodes have been compromised

– Attacker may be passively logging traffic

• Better not to trust any individual router
– Assume that some fraction of routers is good, don’t know which

Deployed Anonymity Systems

Tor (http://tor.eff.org)
• Overlay circuit-based anonymity network
• Best for low-latency applications such as anonymous

Web browsing
Mixminion (http://www.mixminion.net)

• Network of mixes
• Best for high-latency applications such as anonymous

email

Some caution

Tor isn’t completely effective by itself
• Challenges if you have cookies turned on in your

browser, are using JavaScript, etc.
• Exit nodes can see everything!

