
Tadayoshi Kohno

CSE 484 / CSE M 584 (Winter 2013)

Software Security

Thanks to Vitaly Shmatikov, Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Bennet Yee, and many others for sample slides and

materials ...

Goals for Today

 Software security

 Lab 1: Awesome!
 HW2 out last week

Compromising Asymmetric Private
Keys

Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection
• Put malicious code in a predictable location in memory,

usually masquerading as data
• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Defense: prevent execution of untrusted code
• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code
• Ensure that all control transfers are into a trusted,

approved code image

Following slides adopted from Vitaly Shmatikov and Hovav Shacham

W⊕X / DEP

Mark all writeable memory locations as non-
executable
• Example: Microsoft’s DEP - Data Execution Prevention
• This blocks many (not all) code injection exploits

Hardware support
• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
• OS can make a memory page non-executable

Widely deployed
• Windows (since XP SP2), Linux (via PaX patches),

OpenBSD, OS X (since 10.5)

What Does W⊕X Not Prevent?

Can still corrupt stack …
• … or function pointers or critical data on the heap

As long as “saved EIP” points into existing code,
W⊕X protection will not block control transfer

This is the basis of return-to-libc exploits
• Overwrite saved EIP with address of any library routine,

arrange memory to look like arguments
May not look like a huge threat

• Attacker cannot execute arbitrary code
• … especially if system() is not available

return-to-libc on Steroids (Hovav
Shacham, CCS 2007)

 Overwritten saved EIP need not point to the beginning of a
library routine

 Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)
• 0x80004c3 <main+51>: movl %ebp,%esp
• 0x80004c5 <main+53>: popl %ebp
• 0x80004c6 <main+54>: ret

• Use it as the new value for EIP
– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique” (2005)
What is this good for?
Answer [Shacham et al.]: everything

• Turing-complete language
• Build “gadgets” for load-store, arithmetic, logic, control

flow, system calls
• Attack can perform arbitrary computation using

no injected code at all!

[Shacham et al]

Ordinary Programming

 Instruction pointer (EIP) determines which
instruction to fetch and execute

Once processor has executed the instruction, it
automatically increments EIP to next instruction

Control flow by changing value of EIP

Return-Oriented Programming

Stack pointer (ESP) determines which instruction
sequence to fetch and execute

Processor doesn’t automatically increment ESP
• But the RET at end of each instruction sequence does

No-ops

No-op instruction does nothing but advance EIP
Return-oriented equivalent

• Point to return instruction
• Advances ESP

Useful -- like a NOP sled

Immediate Constants

 Instructions can encode constants
Return-oriented equivalent

• Store on the stack
• Pop into register to use

Control Flow

Ordinary programming
• (Conditionally) set EIP to new value

Return-oriented equivalent
• (Conditionally) set ESP to new value

Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence
needed to encode logical unit

Example: load from memory into register
• Load address of source word into EAX
• Load memory at (EAX) into EBX

Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4
Gadgets built from found code sequences:

• Load-store, arithmetic & logic, control flow, syscalls
Found code sequences are challenging to use!

• Short; perform a small unit of work
• No standard function prologue/epilogue
• Haphazard interface, not an ABI
• Some convenient instructions not always available

Finding Instruction Sequences

Any instruction sequence ending in RET is useful
Algorithmic problem: recover all sequences of

valid instructions from libc that end in a RET
At each RET (C3 byte), look back:

• Are preceding i bytes a valid instruction?
• Recur from found instructions

Collect found instruction sequences in a tree

ret}

Unintended Instructions
c7
45

d4
01
00

00
00

f7
c7

07

00

00
00
0f

95

45

c3

movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp}

}

Actual code from ecb_crypt()

x86 Architecture Helps

Register-memory machine
• Plentiful opportunities for accessing memory

Register-starved
• Multiple sequences likely to operate on same register

 Instructions are variable-length, unaligned
• More instruction sequences exist in libc
• Instruction types not issued by compiler may be

available
Unstructured call/ret ABI

• Any sequence ending in a return is useful

SPARC: The Un-x86 (Skim)

Load-store RISC machine
• Only a few special instructions access memory

Register-rich
• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced
• No unintended instructions

Highly structured calling convention
• Register windows
• Stack frames have specific format

ROP on SPARC (Skim)

Use instruction sequences that are suffixes of real
functions

Dataflow within a gadget
• Structured dataflow to dovetail with calling convention

Dataflow between gadgets
• Each gadget is memory-memory

Turing-complete computation!
• “When Good Instructions Go Bad: Generalizing Return-

Oriented Programming to RISC” (CCS 2008)

More ROP

Harvard architecture: code separate from data ⇒
code injection is impossible, but ROP works fine
• Z80 CPU – Sequoia AVC Advantage voting machines
• Some ARM CPUs – iPhone

No returns = no problems?
• (Ineffective) defense against ROP: eliminate sequences

with RET and/or look for violations of LIFO call-return
order

• Use update-load-branch sequences in lieu of returns + a
trampoline sequence to chain them together

• Read “Return-oriented programming without
returns” (CCS 2010)

Other Issues with W⊕X / DEP

Some applications require executable stack
• Example: Lisp interpreters

Some applications are not linked with /NXcompat
• DEP disabled (e.g., popular browsers)

JVM makes all its memory RWX – readable,
writable, executable
• Inject attack code over memory containing Java objects,

pass control to them

Security Systems Endangered w/
Return-oriented Programming

W-xor-X aka DEP
• Linux, OpenBSD, Windows XP SP2, MacOS X
• Hardware support: AMD NX bit, Intel XD bit

Trusted computing
Also

• Code signing: Xbox
• Binary hashing: Tripwire, etc.
• … and others

General Principles

Principles

 Check inputs

Principles

 Least privilege

Principles

 Check all return values

Principles

 Securely clear memory (passwords, keys, etc)

Principles

 Failsafe defaults

Principles

 Defense in Depth

 Also
• Prevent
• Detect
• Deter

Principles

 Reduce size of TCB

 Simplicity(*)

Modularity(*)

 (*) But: Be careful at interface boundaries

Principles

Minimize attack surface

Principles

 Use vetted components

Principles

 Security by design

Principles (Concepts)

 Tension between security and other goals

Principles

Open design? Open source? Closed Source?
 Different Perspectives

 Linux Kernel Backdoor Attempt: http://
www.freedom-to-tinker.com/?p=472

Vulnerability Analysis and Disclosure

What do you do if you’ve found a security problem
in a real system?

 Say
• A commercial website?
• UW grade database?
• Boeing 787?
• TSA procedures?

