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Manferdelli, John Mitchell, Bennet Yee, and many others for sample slides and 

materials ...



Goals for Today

 Software security 

 Lab 1:  Awesome!
 HW2 out last week



Compromising Asymmetric Private 
Keys



Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection
• Put malicious code in a predictable location in memory, 

usually masquerading as data
• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Defense: prevent execution of untrusted code
• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code
• Ensure that all control transfers are into a trusted, 

approved code image

Following slides adopted from Vitaly Shmatikov and Hovav Shacham 



W⊕X / DEP

Mark all writeable memory locations as non-
executable
• Example: Microsoft’s DEP - Data Execution Prevention
• This blocks many (not all) code injection exploits

Hardware support
• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
• OS can make a memory page non-executable

Widely deployed
• Windows (since XP SP2), Linux (via PaX patches), 

OpenBSD, OS X (since 10.5)



What Does W⊕X Not Prevent?

Can still corrupt stack …
• … or function pointers or critical data on the heap

As long as “saved EIP” points into existing code, 
W⊕X protection will not block control transfer

This is the basis of return-to-libc exploits
• Overwrite saved EIP with address of any library routine, 

arrange memory to look like arguments
May not look like a huge threat

• Attacker cannot execute arbitrary code
• … especially if system() is not available



return-to-libc on Steroids (Hovav 
Shacham, CCS 2007)

 Overwritten saved EIP need not point to the beginning of a 
library routine

 Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

– Guess what?  Its value is under attacker’s control!  (why?) 
• 0x80004c3 <main+51>:    movl   %ebp,%esp
• 0x80004c5 <main+53>:    popl   %ebp
• 0x80004c6 <main+54>:    ret

• Use it as the new value for EIP
– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack



Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the 

borrowed code chunks exploitation technique” (2005)
What is this good for?
Answer [Shacham et al.]: everything

• Turing-complete language
• Build “gadgets” for load-store, arithmetic, logic, control 

flow, system calls
• Attack can perform arbitrary computation using 

no injected code at all!

[Shacham et al]



Ordinary Programming

 Instruction pointer (EIP) determines which 
instruction to fetch and execute

Once processor has executed the instruction, it 
automatically increments EIP to next instruction

Control flow by changing value of EIP



Return-Oriented Programming

Stack pointer (ESP) determines which instruction 
sequence to fetch and execute

Processor doesn’t automatically increment ESP
• But the RET at end of each instruction sequence does



No-ops

No-op instruction does nothing but advance EIP
Return-oriented equivalent

• Point to return instruction
• Advances ESP

Useful -- like a NOP sled  



Immediate Constants

 Instructions can encode constants
Return-oriented equivalent

• Store on the stack
• Pop into register to use



Control Flow

Ordinary programming
• (Conditionally) set EIP to new value

Return-oriented equivalent
• (Conditionally) set ESP to new value



Gadgets: Multi-instruction Sequences

Sometimes more than one instruction sequence 
needed to encode logical unit

Example: load from memory into register
• Load address of source word into EAX
• Load memory at (EAX) into EBX



Gadget Design

Testbed: libc-2.3.5.so, Fedora Core 4
Gadgets built from found code sequences:

• Load-store, arithmetic & logic, control flow, syscalls
Found code sequences are challenging to use!

• Short; perform a small unit of work
• No standard function prologue/epilogue
• Haphazard interface, not an ABI
• Some convenient instructions not always available



Finding Instruction Sequences

Any instruction sequence ending in RET is useful
Algorithmic problem: recover all sequences of 

valid instructions from libc that end in a RET
At each RET (C3 byte), look back:

• Are preceding i bytes a valid instruction?
• Recur from found instructions

Collect found instruction sequences in a tree



ret}

Unintended Instructions
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movl $0x00000001, -44(%ebp)

test $0x00000007, %edi

setnzb -61(%ebp)

add %dh, %bh

movl $0x0F000000, (%edi)

xchg %ebp, %eax
inc %ebp}

}

Actual code from ecb_crypt()



x86 Architecture Helps

Register-memory machine
• Plentiful opportunities for accessing memory

Register-starved
• Multiple sequences likely to operate on same register

 Instructions are variable-length, unaligned
• More instruction sequences exist in libc
• Instruction types not issued by compiler may be 

available
Unstructured call/ret ABI

• Any sequence ending in a return is useful



SPARC: The Un-x86 (Skim)

Load-store RISC machine
• Only a few special instructions access memory

Register-rich
• 128 registers; 32 available to any given function

All instructions 32 bits long; alignment enforced
• No unintended instructions

Highly structured calling convention
• Register windows
• Stack frames have specific format



ROP on SPARC (Skim)

Use instruction sequences that are suffixes of real 
functions

Dataflow within a gadget
• Structured dataflow to dovetail with calling convention

Dataflow between gadgets
• Each gadget is memory-memory

Turing-complete computation!
• “When Good Instructions Go Bad: Generalizing Return-

Oriented Programming to RISC” (CCS 2008)



More ROP

Harvard architecture: code separate from data ⇒ 
code injection is impossible, but ROP works fine
• Z80 CPU – Sequoia AVC Advantage voting machines
• Some ARM CPUs – iPhone

No returns = no problems?
• (Ineffective) defense against ROP: eliminate sequences 

with RET and/or look for violations of LIFO call-return 
order

• Use update-load-branch sequences in lieu of returns + a 
trampoline sequence to chain them together

• Read “Return-oriented programming without 
returns” (CCS 2010)



Other Issues with W⊕X / DEP

Some applications require executable stack
• Example: Lisp interpreters

Some applications are not linked with /NXcompat
• DEP disabled (e.g., popular browsers)

JVM makes all its memory RWX – readable, 
writable, executable 
• Inject attack code over memory containing Java objects, 

pass control to them



Security Systems Endangered w/ 
Return-oriented Programming

W-xor-X aka DEP
• Linux, OpenBSD, Windows XP SP2, MacOS X
• Hardware support: AMD NX bit, Intel XD bit

Trusted computing
Also

• Code signing: Xbox
• Binary hashing: Tripwire, etc.
• … and others



General Principles 



Principles

 Check inputs



Principles

 Least privilege



Principles

 Check all return values



Principles

 Securely clear memory (passwords, keys, etc)



Principles

 Failsafe defaults



Principles

 Defense in Depth

 Also
• Prevent
• Detect
• Deter



Principles

 Reduce size of TCB

 Simplicity(*)

Modularity(*)

 (*) But:  Be careful at interface boundaries



Principles

Minimize attack surface



Principles

 Use vetted components



Principles

 Security by design



Principles (Concepts)

 Tension between security and other goals



Principles

Open design?  Open source?  Closed Source?
 Different Perspectives

 Linux Kernel Backdoor Attempt:  http://
www.freedom-to-tinker.com/?p=472



Vulnerability Analysis and Disclosure

What do you do if you’ve found a security problem 
in a real system?

 Say
• A commercial website? 
• UW grade database?
• Boeing 787?
• TSA procedures?


