CSE 484 / CSE M 584 (Winter 2013)

(Continue) Cryptography + (Back
to) Software Security

S
> L

Tadayoshi Kohno

Thanks to Vitaly Shmatikov, Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Bennet Yee, and many others for sample slides and
materials ...

Goals for Today

¢ Cryptography
¢ Software security (now that you've had more
experience with Lab 1)

¢ HW?2 out soon (on cryptography)

Note: Optimizing Exponentiation

e L T T st L L T T T e L TR« WL T e L B T T e T T o o T T e T T e
L S B AN e NS o D RNE G NN NS S s ..)&.’z DA e NS b s ..)&.’z' e Sl el 23 s ..)&.’z LA o NS R s

—a

¢ How to compute M* mod N? Say x=13
¢ Sums of power of 2, x = 8+4+1 = 23+22+20
¢ Can also write x in binary, e.g., x = 1101
¢ Can solve by repeated squaring
*y=1
ey=y>*MmodN //y=M
ey=y2*MmodN//y=M2"M =M+l = M3
oy = y mod N // y = (M2+1)2 M4+2
ey = y2>|< M mod N // y = (|V|4+2)2 *M — M8+4+1
® Does anyone see a potential issue?

Tlmlng attacks

Collect tlmmgs for exponentlatlon Wlth a bunch of messages Ml

M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know bs=1, bo=1, guess bi=1

i bi=0 bi=1 Comp |Meas

3 ly=y?modN]|y =vy?* M1 modN

2 Jly=v?modN |y = y2* M1 mod N

1 Jy=vy?modN |y = vy?* M1 mod N/|X1 secs

0 ly=y?modNl|y =y2* M1 modN Y1 secs
i bi=0 bi=1 Comp |Meas

3 ly=y?modN |y =vy?* M2 mod N

2 Jly=v?modN |y =v2* M2 mod N

1 Jy=vy?modN |y = y? * M2 mod NI|X2 secs

0 ly=y?modN|y =y?* M2 modN Y2 secs

Tlmlng attacks

0 If b1 = 1 then set of { Y] Xj | jin{1,2, ..} } has
dlstrlbutlon with “small” variance (due to time for final
step, i=0)

e “Guess” was correct when we computed X1, X2, ...
®Ifbi1=0,thensetof {Yj-Xj|jin{1,2, ..} } has
distribution with “large” variance (due to time for final
step, i=0, and incorrect guess for b1)
e "“Guess” was incorrect when we computed X1, X2, ...

e So time computation wrong (Xj computed as large, but really
small, ...)

¢ Strategy: Force user to sign large number of messages
M1, M2, Record timings for signing.

¢ Iteratively learn bits of key by using above property.

Authenticity of Public Keys

private key

public key

Problem: How does Alice know that the public key
she received is really Bob’s public key?

Distribution of Public Keys

. - PR ¢ WAL e R B
.); PN o, NS s J

@ Public announcement or public directory
e Risks: forgery and tampering
® Public-key certificate
e Signed statement specifying the key and identity
— sigea("Bob”, PKg)
¢ Common approach: certificate authority (CA)
e Single agency responsible for certifying public keys

e After generating a private/public key pair, user proves his
identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

e Every computer is pre-configured with CA’s public key

Keychains
login A-Trust-nQual-01

Micr...ertificates
System

Root certificate authority
Expires: Sunday, November 30, 2014 3:00:00 PM Pacific Standard Time

@ This certificate is valid

System Roots

Kind

Date Modified

Expires

' Keychain

Category

All ltems
Passwords
Secure Notes
My Certificates
Keys
Certificates

.. A-Trust-nQual-01
k) A-Trust-nQual-03
£ A-Trust-Qual-01
£ A-Trust-Qual-02

] AAA Certificate Services

k) AC Raiz Certicimara S.A.
] AddTrust Class 1 CA Root
. AddTrust External CA Root
5.l AddTrust Public CA Root
k) AddTrust Qualified CA Root

k] Admin-Root-CA
k) AdminCA-CD-T01

k] AffirmTrust Commercial
L AffirmTrust Networking

£ AffirmTrust Premium

£ AffirmTrust Premium ECC

] America Onli...ation Authority 1
) America Onli...ation Authority 2
£ AOL Time W...cation Authority 1
L] AOL Time W...cation Authority 2

[5] Apple Root CA

certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate
certificate

Nov 30, 2014 3:00:00 PM
Aug 17, 2015 3:00:00 PM
Nov 30, 2014 3:00:00 PM
Dec 2, 2014 3:00:00 PM
Dec 31, 2028 3:59:59 PM
Apr 2, 2030 2:42:02 PM
May 30, 2020 3:38:31 AM
May 30, 2020 3:48:38 AM
May 30, 2020 3:41:50 AM
May 30, 2020 3:44:50 AM
Nov 9, 2021 11:51:07 PM
Jan 25, 2016 4:36:19 AM
Dec 31, 2030 6:06:06 AM
Dec 31, 2030 6:08:24 AM
Dec 31, 2040 6:10:36 AM
Dec 31, 2040 6:20:24 AM
Nov 19, 2037 12:43:00 PM
Sep 29, 2037 7:08:00 AM
Nov 20, 2037 7:03:00 AM
Sep 28, 2037 4:43:00 PM
Feb 9, 2035 1:40:36 PM

System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots
System Roots

Hierarchical Approach

. - S " =N ™ N W - e
t - el 0.0 o N 2 at. n el 0.0 F 2

@ Single CA certifying every public key is impractical
¢ Instead, use a trusted root authority
e For example, Verisign

e Everybody must know the public key for verifying root
authority’s signatures

¢ Root authority signs certificates for lower-level
authorities, lower-level authorities sign certificates
for individual networks, and so on
e Instead of a single certificate, use a certificate chain
— SiQyerisign(ANOtherCA”, PKyotherca)r Si9anothercal Alice”, PK,)

e What happens if root authority is ever compromised?

Many Challenges

(BNE G RSN NS R b IS 04 AN S NS R b SNE s RSN NG R S SNE A AN NG R b SNE G RN SO R NS

Posted by timothy on Mon May 27, '02 09:48 PM
from the there-is-a-problem-with-this-certificate dept.

Embedded Geek writes:

"Scientific American has an interesting article about how a pair of students
at the Technion-Israel Institute of Technology registered "microsoft.com”
with Verisign, using the Russian Cyrillic letters "c" and "o". Even though it
is a completely different domain, the two display identically (the article uses the
term "homograph"). The work was done for a paper in the Communications of the
ACM (the paper itself is not online). The article characterizes attacks using this
spoof as "scary, if not entirely probable," assuming that a hacker would have to first
take over a page at another site. | disagree: sending out a mail message with the
URL waiting to be clicked ("Bill Gates will send you ten dollars!"} is just one

alternate technique. While security problems with Unicode have been noted here
before, this might be a new twist."

http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/

Many ChaIIenges

(BNE 5o RSN NS R b NS 6 AN DEEN n I RS SN 6 WA e NSNS R SNE s AR S NS R b SN Y

reate a hogue CA Ce cate

Posted by CmdrTaco on Tue Dec 30, 2008 12:14 PM
from the they-even-faked-this-dept dept.

13rmindt0r writes

"Just when you were breathing easy about Kaminsky, DNS
and the word hijacking, by repeating the word SSL in your
head, the hackers at CCC were busy at work making a
hash of SSL certificate security. Here's the scoop on how
they set up their own rogue CA, by (from what | can figure)
reversing the hash and engineering a collision up in MD5 space.
Until now, MD5 collisions have been ignored because nobody would
put in that much effort to create a useful dummy file, but a CA
certificate for phishing seems juicy enough to be fodder for the
botnets now."

DigiNotar Hacked by Black.Spook and Iranian Hackers Posted by Mikko @ 09:05 GMT | Comments

DigiNotar is a Dutch Certificate Authority. They sell SSL certificates.

| DigiNotar B.V. (0034104347) [NU]| https://www.diginotar.nl = Ik

a = @
DlglNOtar HOME ACTUEEL PRODUCTEN E

A G VIASCOC> COMPANY

. "_//7“

v \
\
-

- .
/’ i

%

Ga direct naar ...

DigiNotar®, Internet Tru
Certificaat voor Digipoort

Dée onafhankeliike partil voor

Somehow, somebody managed to get a rogue SSL certificate from them on July 10th, 2011. This certificate was issued for domain
name .google.com.

What can you do with such a certificate? Well, you can impersonate Google — assuming you can first reroute Internet traffic for
google.com to you. This is something that can be done by a government or by a rogue ISP. Such a reroute would only affect users

within that country or under that ISP.

Alternative: “Web of Trust”

® Used in PGP (Pretty Good Privacy)

@ Instead of a single root certificate authority, each
person has a set of keys they “trust”

o If public-key certificate is signed by one of the “trusted”
keys, the public key contained in it will be deemed valid

® Trust can be transitive
e Can use certified keys for further certification
Sigaice(" Friend”, Friend’s key)
Sigrriend(FOQF”, FoaF’s key)
g p —>

Friend of Alice B
Alice Friend of friend ob

X.509 Certificate

LA N - P W TN e W L % - P W TN e W L % - P W TN e W L % - P W TN e W L % - P WL TN e W s %
ORI T AR P W TS T TN R YT W TS S T AR WS W S TN SR YT NN TS R TN RO VTR TN

A 4 A
Version
Certificate
Sj Serial Number
) lgna.lure algorithm
algorithm~ j------ . -r;;‘;t-; ----
identifier d = o
Issuer Name 7
W ~
~ =
Period of L 1!«_ﬂ_b_c‘[u_re_ _____ g ;
validity not after E .
Subject Name £
RN 4
Subject’s ¢ rhms . s
public key<|_____ parameters
info key v
Issuer Unique
Identifier J Added in X.509 versions 2 and 3 to address
Subject Unique L | usability and security problems
Identifier @ + |
Extensions
. g Y
Signature < |~~~ "~ paramel ‘ ers " = Z
4 g

Certificate Revocation

s L TP T s L a
[N [N [N P A - S 4 . i s P A - S 4 . i »

® Revocation is very important

¢ Many valid reasons to revoke a certificate

e Private key corresponding to the certified public key has
been compromised

e User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

e CA's private key has been compromised!

¢ Expiration is a form of revocation, too

e Many deployed systems don't bother with revocation

e Re-issuance of certificates is a big revenue source for
certificate authorities

Certificate Revocation Mechanisms

- - - - - - F LS - - - -

® Online revocation service

e When a certificate is presented, recipient goes to a special
online service to verify whether it is still valid

— Like a merchant dialing up the credit card processor

@ Certificate revocation list (CRL)

e CA periodically issues a signed list of revoked certificates

— Credit card companies used to issue thick books of canceled credit
card numbers

e Can issue a “delta CRL" containing only updates

X.509 Certificate Revocation List

i PR B B« Wl TS L iy - PR B B« Wl TS L iy - PR B B« Wl TS L iy - PR B B« Wl TS L iy - TR Y B« Wl TS L iy -
INGN TR NG R WS NN T P LN R WA NON P NG NG WA NEN TP N N W NS NTN T LI AR WA

Signature
.g, a.tu ¢ algorithm
algorithm< }------—----------
identifier RRESTE
Issuer Name
This Update Date
Next Update Date Because certificate serial numbers
must be unique within each CA, this is
Revoked | user certificate serial # — enough to identify the certificate
certificate revocation date
L
L
L
Revoked user certificate serial #
certificate revocation date
algorithms
Signature

Convergence

» t » > SNE 5 NN S NS I b SNG4 N o NG R e SNE J5 2 NN o NG B e ' 3

¢ Background observation:

e MITM attacker will have a hard time mounting man-in-
the-middle attacks against all clients around the world

® Basic idea:

e Lots of nodes around the world obtaining SSL/TLS
certificates from servers

e Check responses across servers, and also observe
unexpected changes from existing certificates

SSL

p Lo N e Lo N ~ e W - N e " T N e " T N ~ e W ra"
LB =l _ S . S Nuals =l _ S . S Nuals =l _ S . S Nuals —a _ S S » —a _ S S »

® Transport Layer Security (TLS) protocol, version 1.2
e De facto standard for Internet security

e “"The primary goal of the TLS protocol is to provide
privacy and data integrity between two communicating
applications”

e In practice, used to protect information transmitted
between browsers and Web servers (and mail readers
and ...)

® Based on Secure Sockets Layers (SSL) protocol,
version 3.0

e Same protocol design, different algorithms
® Deployed in nearly every Web browser

SSL / TLS in the Real World

e — . —— - - o — - - — . —— -

- T . e ——

* Computey Science & Engir

4= e &ww.cs.washington.edu

UNIVERSITY OF WASHINGTON | ABOUT US | CONTACT US | MY CSE | INTERNAL

Computer Science & Engineering +s - o

UNIVERSITY of WASHINGTON

Industry Support
Affiliates CSE

Level 1:2
Yender lendex

Refraction

Refraction Is a free, online puzzle game for teaching
fractions, developed by UW CSE's Center for Game

Science.

Hlstory of the Protocol

W TN B " T IN L TRh WL T T, e N
: t£ t£ N SN e DERNE o RN SN e i g

0 SSL 1 0
e Internal Netscape design, early 19947
e Lost in the mists of time
¢ SSL 2.0
e Published by Netscape, November 1994
e Several weaknesses
¢ SSL 3.0
e Designed by Netscape and Paul Kocher, November 1996
¢®TLS 1.0

e Internet standard based on SSL 3.0, January 1999

e Not interoperable with SSL 3.0
— TLS uses HMAC instead of earlier MAC; can run on any port

®TLS 1.2
e Remove dependencies to MD5 and SHA1

“"Request for Comments”

® Network protocols are usually disseminated in the
form of an RFC

€ TLS version 1.0 is described in RFC 5246

¢ Intended to be a self-contained definition of the
protocol

e Describes the protocol in sufficient detail for readers who
will be implementing it and those who will be doing
protocol analysis

e Mixture of informal prose and pseudo-code

TLS Basics

. - S - = ™ N W - e " =N ™ N W - e
- el 0.0 o N 2 at. n el 0.0 o N 2 at. n el 0.0 F 2

@ TLS consists of two protocols

e Fami

€ Hands
e Use

iar pattern for key exchange protocols
nake protocol

public-key cryptography to establish a shared

secret key between the client and the server

¢ Record protocol

e Use the secret key established in the handshake
protocol to protect communication between the client
and the server

¢ We will focus on the handshake protocol

TLS Handshake Protocol

¢ Two parties: client and server
® Negotiate version of the protocol and the set of
cryptographic algorithms to be used

e Interoperability between different implementations of the
protocol

¢ Authenticate client and server (optional)

e Use digital certificates to learn each other’s public keys
and verify each other’s identity

¢ Use public keys to establish a shared secret

[BNE Jo s HAN o NG R b NS G AN e NS e e

Handshake Protocol Structure

i i » TN e e T R
B S AN A el T.a i N T2l el T.a i B S AN A el T.a S Ny .

ClientHello
—
ServerHello,

[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone
e ———————————
C [Certificate], S
ClientKeyExchange,

[CertificateVerify]

—

switch to negotiated cipher
Finished

switch to negotiated cipher

Finished
—

Record of all sent and
received handshake messages

ClientHello

ClientHello

X~

Client announces (in plaintext):
* Protocol version
» Supported Cryptographic algorithms

ClientHello (RFC)

L TR WL TSI T e i A RE o e Tl

AESG Br be " SRS 5 NN S NS B e &

struct { ety he e
ProtocolVersion client_version; —
Ra ndom ra ndOm;) Session id (if thelglient _Nar;ts to

SessionID session_id; —
. . .] Set of cryptographic algorithms
CipherSuite cipher_suites; % PO ralman
CompressionMethod compression_methods;
} ClientHello

ServerHello

T Y T T g T TP T TR T TN B i
SENNE o, lt NG) o AN lt e BNE 5 AN o NS R b BNE 8 AN e NG RSy e B

C, Version,, suite., N,

—

ServerHello

Server responds (in plaintext) with:
 Highest protocol version supported by
C both client and server

e Strongest cryptographic suite selected
from those offered by the client

ServerKeyExchange

- B
N P> ol (R O e PTG ’

C, Version,, suite., N,

—

Version,, suite,, N

s/ s/

ServerKeyExchange

C Server sends public-key certificate
containing either RSA, or
Diffie-Hellman public key
(depending on chosen crypto suite)

ClientKeyExchange

RO SR A ol

C, Version,, suite., N,
—

Version,, suite,, N,

Sig..(S,K),

“ServerHelloDone”
—

ClientkeyExchange

R

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

“Core” SSL 3.0 Handshake (Not TLS)

C, Version.=3.0, suite., N,
———————————————————————

Version,=3.0, suite,, N,
Sigea(S/Ks),

\\ n

C {Secret_}«. S

—

If the protocol is correct, C and S share
some secret key material (secret,) at this point

switch to key derived switch to key derived
from secret,, N, N from secret,, N, N

Version Rollback Attack

(BNE G RSN NS R b IS 04 AN S NS R b SNE s RSN NG R S SNE A AN NG R b SNE G RN SO R NS

Server is fooled into thinking it s Version,=2.0, suite,, N,
is communicating with a client (* sig_(S,K),

who supports only SSL 2.0 “ServerHelloDone”

C {Secret_}. S

C and S end up communicating using SSL 2.0

(weaker earlier version of the protocol without finished
message from client)

SSL 2.0 Weaknesses (Fixed in 3.0)

® Cipher suite preferences are not authenticated

e “Cipher suite roll
@ SSL 2.0 uses pad

pack” attack is possible
ding when computing MAC in

block cipher moc
authenticated

es, but padding length field is not

o Attacker can delete bytes from the end of messages
¢ MAC hash uses only 40 bits in export mode

® No support for certificate chains or non-RSA
algorithms, no handshake while session is open

Protocol Rollback Attacks

¢ Why do people release new versions of security
protocols? Because the old version got broken!

® New version must be
e Not everybody upgrades right away

@ Attacker can fool someone into using the old,
broken version and exploit known vulnerability

e Similar: fool victim into using weak crypto algorithms
¢ Defense is hard: must authenticate version in early
designs

¢ Many protocols had “version rollback” attacks
e SSL, SSH, GSM (cell phones)

Version Check in SSL (Approxmate)

r‘-a = -t ..

5
[|
d
}1
3
[4
'
!
)‘
5
[|
d
}1
3
[4
'
!
)‘
5
[|
d
}1
3
[4
I
.)
p.!

C, Versionc=2.0, suite., N,

“Embed” eight 3s into left Versions=2.0, suiteg, N,
side of this secret if server Sig..(S,K,),

| Sa|d VerSions=2-0 \\ServerHe”ODonen

If “embedded” version information includes L S
eight 3s but server supports version 3, issue

error.

{Version_,Secret_}.

If the protocol is correct, C and S share
some secret key material secret. at this point

switch to key derived switch to key derived
from secret,, N, N from secret,, N, N

SSL/TLS Record Protection

Application Data

Fragment

Compress

Add MAC

Encrypt

Append SSL
Record Header

I T

Py TP B e TR
Zfat SN e s g

}

VN

N

NEOSEDEDEDEDENDEL

~ Use symmetric keys

established in handshake protocol

Summary

OSymmetrlc Crypto
e Encryption
e MACs

e Dedicated Authenticated Encryption Schemes
— GCM (Galois Counter Mode)
- CCM
— OCB

¢ Asymmetric Crypto

e DH

e RSA (encryption and signatures)

o Authenticity of public keys

® Protocol rollback attacks

P T TN e W RIS L TR« Wl TS e i W BT B W TR« Wl TS e i W R e T T »
NSRS RS NS A AN NSRS R NS G A AN NSRS R R NS G AN NSRS RS B

¢ Symmetric Crypto
e Encryption
e MACs
e Dedicated Authenticated Encryption Schemes
— GCM (Galois Counter Mode)
- CCM
— OCB
¢ Asymmetric Crypto
e DH
e RSA (encryption and signatures)
e Authenticity of public keys

® Protocol rollback attacks

Back to Software Security
(BNG J5 - MO S NS B b NG J5 2 NN o NS R be > SNE 6 MR o NG R b INE o NN

Nt N N
w4 w4 LN w4

Defenses

P Wl N - o A A« Wl e - o A T L - o A A« Wl e -
< = B N - 5 = B N - 5 S Ll N - 5 S Ll »
s — - s e . 2 BB e S - s e . 2 BB e S - s e . S Nual Faloal - s e . & »

¢ Already discussed Stack Guard: put canary on
stack

P TN e e LW R Y T R Wl e - o - -

I | tG d
NS 30 S S GR RTINS G SR SR NN &~

o - . A L A RS &
)&.’L Cal .S o ol 7.4 DC RN S o SUANE A NS S ""..)&.’L DA e NS b ERNE

¢ Attack: overflow a function pointer so that it points
to attack code

® Idea: encrypt all pointers while in memory

e Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
— Pointers cannot be overflown while in registers

¢ Attacker cannot predict the target program’s key

e Even if pointer is overwritten, after XORing with key it will
dereference to a “random” memory address

Normal Pointer Dereference [cowan]

[- M = .-.-" r - el - M = .-.-" r - el - M = .-.-" r - el - M = .-.-" r - el - M = .-.-" - el o n
; & e RN ol T. DERNE G AN ol T. DERNE G AN ol T. DERNE G AN ol T. DERNE G AN ol T. o W

1. Fetch pointer value 2. Access data referenced by pointer
- 7 Y
Memory Ox1234 pats
0x1234

CPU

2. Access attack code referenced
by corrupted pointer

1. Fetch pointer value

Corruptgd pointer Attack

Memory oz Data code

0x1234 0x1340

PointGuard Dereference [Cowan]

(BNE G N NS R b NS 0 AN S NG R b SNE s H AN NG R b NS A AN NG R b SNE s AN NG R b NS

CPU

1. Fetch pointer Ox1234 2. Access data referenced by pointer

value Decrypt
e

7 <
Encrypted pointer

Memory x7239 pata

0x1234

Decrypts to
random value

2. Access random address;
0x9786 segmentation fault and crash

1. Fetch pointer
value Decrypt
e
Corruptgd pointer Attack T
—0x7239 | Data
Memory 0x1340 code

0x1234 0x1340 0x9786

PointGuard Issues

A, ot A, ot A, Rt NS

® Must be very fast
e Pointer dereferences are very common
¢ Compiler issues

e Must encrypt and decrypt only pointers

o If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

¢ Attacker should not be able to modify the key
e Store key in its own non-writable memory page

® PG'd code doesn’t mix well with normal code
e What if PG'd code needs to pass a pointer to OS kernel?

Other solutions to some of these issues

o T.a ~ - I - - i el (Sl - i el (Sl A i

¢ Use safe programming languages, e.g., Java
e What about legacy C code?
e (Note that Java is not the complete solution)

® Program analysis of source code to find overflows
e Coverity
e Fortify

€ Randomize stack location or encrypt return address
on stack by XORing with random string

e Attacker won't know what address to use in his or her
string

Fuzz Testing

. A - " T - e B Y - L . " T - e B Y - L . " T - e B Y
ol il P e el PI A Nl (PR N 2 el T N PR N Sl -

® Generate “random” inputs to program

e Sometimes conforming to input structures (file
formats, etc)

#® See if program crashes
o If crashes, found a bug
e Bug may be exploitable

@ Surprisingly effective

¢ Now standard part of development lifecycle

Next slides special thanks to Hovav Shacham and Vitaly Shmatikov

Buffer Overflow: Causes and Cures

(BN 30 MR L NG R b D SNS J ¢ AL G R b NS ¢ RN AL G R S SRS i RN NG R b D SN B AN S R b D" SNG B¢ AN

¢ Typical memory exploit involves code injection

e Put malicious code in a predictable location in memory,
usually masquerading as data

e Trick vulnerable program into passing control to it
— Overwrite saved EIP, function callback pointer, etc.
® Defense: prevent execution of untrusted code

e Make stack and other data areas non-executable
— Note: messes up useful functionality (e.g., ActionScript)

e Digitally sign all code

e Ensure that all control transfers are into a trusted,
approved code image

WoX / DEP

® Mark all writeable memory locations as non-
executable

e Example: Microsoft’s DEP - Data Execution Prevention
e This blocks many (not all) code injection exploits

¢ Hardware support
o AMD “NX" bit, Intel "XD” bit (in post-2004 CPUs)
e OS can make a memory page non-executable

¢ Widely deployed

o Windows (since XP SP2), Linux (via PaX patches),
OpenBSD, OS X (since 10.5)

What Does W@®X Not Prevent?

(BN 30 MR L NG R b D SNS J ¢ AL G R b NS ¢ RN AL G R S SRS i RN NG R b D SN B AN S R b D" SNG B¢ AN

@ Can still corrupt stack ...
e ... or function pointers or critical data on the heap

® As long as “saved EIP” points into existing code,
W®X protection will not block control transfer

¢ This is the basis of return-to-libc exploits

e Overwrite saved EIP with address of any library routine,
arrange memory to look like arguments

¢ May not look like a huge threat
o Attacker cannot execute arbitrary code
e ... especially if system() is not available

return-to-libc on Steroids (Hovav
Shacham, CCS 2007)

(BN 30 MR L NG R b D SNS J ¢ AL G R b NS ¢ RN AL G R S SRS i RN NG R b D SN B AN S R b D" SNG B¢ AN

¢ Overwritten saved EIP need not point to the
beginning of a library routine

¢ Any existing instruction in the code image is fine
o Will execute the sequence starting from this instruction

¢ What if instruction sequence contains RET?

e Execution will be transferred... to where?

e Read the word pointed to by stack pointer (ESP)
— Guess what? Its value is under attacker’s control! (why?)

e Use it as the new value for EIP
— Now control is transferred to an address of attacker’s choice!

e Increment ESP to point to the next word on the stack

Chaining RETs for Fun and Profit

(NG 300 RSN L NG R b D" SNS J e MANL NS R S NS 54 AN G i S D" SRS i RN NS R b D SNS Ji e RN [ShaCham et al]

© Can chain together sequences ending in RET

e Krahmer, “x86-64 buffer overflow exploits and the
borrowed code chunks exploitation technique” (2005)

¢ What is this good for?

® Answer [Shacham et al.]: everything
e Turing-complete language

e Build “gadgets” for load-store, arithmetic, logic, control
flow, system calls

o Attack can perform arbitrary computation using
no injected code at all!

Ordlnary Programmlng

NS oo AL - NS i RS NS NS i RANOL NS s NS i RS NS Rt D" SN B RN NG R b D" SNS Ji e AN

insn insn insn insn insn

instruction
pointer

@ Instruction pointer (EIP) determines which
instruction to fetch and execute

® Once processor has executed the instruction, it
automatically increments EIP to next instruction

¢ Control flow by changing value of EIP

Return-Oriented Programming

(BN B AN L NG R b D" SNS J ¢ MR NG R b SNS ¢ ML G R b SNE i RN NS R D" SN I e RO N R b D" SN B¢ AN,

insns ... ret insns ... ret

C library

insns ... ret

insns ... ret insns ... ret

/N / ||

stack
pointer

@ Stack pointer (ESP) determines which instruction
sequence to fetch and execute

® Processor doesn’t automatically increment ESP
e But the RET at end of each instruction sequence does

NoO-0ps

I T D e N T T e B e W R I O D T W T R T

nop nop nop
instruction stack
pointer pointer

¢ No-op instruction does nothing but advance EIP

® Return-oriented equivalent

e Point to return instruction
e Advances ESP

¢ Useful -- like a NOP sled

Immediate Constants

I T e N T B T O B e W T R T R D T W T R T

pop %ebx; ret

mov $0xdeadbeet, %eax /
(bb ef be ad de) | l Oxdeadbeef |

Instruction stack
pointer pointer

@ Instructions can encode constants

® Return-oriented equivalent
e Store on the stack
e Pop into register to use

Control Flow

(NG B AN L NG R b D SNG J ¢ MANL NG R b SNG Jh¢ AN S

| it AL QS R S D" NG 6 BN

pop “esp; ret

=] [0 =

Instruction stack
pointer pointer

Ordinary programming

e (Conditionally) set EIP to new value
® Return-oriented equivalent

e (Conditionally) set ESP to new value

