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Goals for Today

 Cryptography
 Software security (now that you’ve had more 

experience with Lab 1)

 HW2 out soon (on cryptography)



Note: Optimizing Exponentiation

 How to compute Mx mod N? Say x=13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N  // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M2+1)2 = M4+2

• y = y2 * M mod N // y = (M4+2)2 *M = M8+4+1

 Does anyone see a potential issue?



i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks 

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1, 
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1



Timing attacks
 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has 

distribution with “small” variance (due to time for final 
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has 
distribution with “large” variance (due to time for final 
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really 

small, ...)

 Strategy:  Force user to sign large number of messages 
M1, M2, ....  Record timings for signing.

 Iteratively learn bits of key by using above property.



Authenticity of Public Keys

?

Problem: How does Alice know that the public key
              she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key



Distribution of Public Keys

Public announcement or public directory
• Risks: forgery and tampering

Public-key certificate
• Signed statement specifying the key and identity

– sigCA(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves his 

identity and knowledge of the private key to obtain CA’s 
certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key





Hierarchical Approach

Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root 

authority’s signatures
Root authority signs certificates for lower-level 

authorities, lower-level authorities sign certificates 
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“AnotherCA”, PKAnotherCA), sigAnotherCA(“Alice”, PKA)

• What happens if root authority is ever compromised?



Many Challenges



Many Challenges
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/





Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each 

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted” 

keys, the public key contained in it will be deemed valid
Trust can be transitive

• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)
sigFriend(“FoaF”, FoaF’s key)

I trust
Alice



X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash



Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has 
been compromised

• User stopped paying his certification fee to this CA and 
CA no longer wishes to certify him

• CA’s private key has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for 

certificate authorities



Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special 

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit 
card numbers

• Can issue a “delta CRL” containing only updates



X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash



Convergence

Background observation:
• MITM attacker will have a hard time mounting man-in-

the-middle attacks against all clients around the world
Basic idea:

• Lots of nodes around the world obtaining SSL/TLS 
certificates from servers

• Check responses across servers, and also observe 
unexpected changes from existing certificates



SSL



What is SSL / TLS?

Transport Layer Security (TLS) protocol, version 1.2
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide 

privacy and data integrity between two communicating 
applications”

• In practice, used to protect information transmitted 
between browsers and Web servers (and mail readers 
and ...)

Based on Secure Sockets Layers (SSL) protocol, 
version 3.0
• Same protocol design, different algorithms

Deployed in nearly every Web browser



SSL / TLS in the Real World



History of the Protocol
 SSL 1.0

• Internal Netscape design, early 1994?
• Lost in the mists of time

 SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

 TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of earlier MAC; can run on any port

 TLS 1.2
• Remove dependencies to MD5 and SHA1



“Request for Comments”

Network protocols are usually disseminated in the 
form of an RFC

TLS version 1.0 is described in RFC 5246
 Intended to be a self-contained definition of the 

protocol
• Describes the protocol in sufficient detail for readers who 

will be implementing it and those who will be doing 
protocol analysis

• Mixture of informal prose and pseudo-code



TLS Basics

TLS consists of two protocols
• Familiar pattern for key exchange protocols

Handshake protocol
• Use public-key cryptography to establish a shared 

secret key between the client and the server
Record protocol

• Use the secret key established in the handshake 
protocol to protect communication between the client 
and the server

We will focus on the handshake protocol



TLS Handshake Protocol

Two parties: client and server
Negotiate version of the protocol and the set of 

cryptographic algorithms to be used
• Interoperability between different implementations of the 

protocol
Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys 
and verify each other’s identity

Use public keys to establish a shared secret



Handshake Protocol Structure

C

ClientHello

ServerHello, 
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished
switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and 
received handshake messages



ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version
• Supported Cryptographic algorithms



struct {
   ProtocolVersion client_version;
   Random random;
   SessionID session_id;
   CipherSuite cipher_suites;
   CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol 
supported by the client

Session id (if the client wants to 
resume an old session)

Set of cryptographic algorithms 
supported by the client (e.g., RSA or 

Diffie-Hellman)



ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by  
   both client and server
• Strongest cryptographic suite selected
   from those offered by the client



ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer sends public-key certificate
containing either RSA, or
Diffie-Hellman public key 
(depending on chosen crypto suite)

C, Versionc, suitec, Nc



ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)



“Core” SSL 3.0 Handshake (Not TLS)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns



Version Rollback Attack

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0 
(weaker earlier version of the protocol without finished 

message from client)

Server is fooled into thinking it 
is communicating with a client 
who supports only SSL 2.0



SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

SSL 2.0 uses padding when computing MAC in 
block cipher modes, but padding length field is not 
authenticated
• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode
No support for certificate chains or non-RSA 

algorithms, no handshake while session is open



Protocol Rollback Attacks

Why do people release new versions of security 
protocols? Because the old version got broken!

New version must be backward-compatible
• Not everybody upgrades right away

Attacker can fool someone into using the old, 
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version in early 
designs

Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)



Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left 
side of this secret if server 
said Versions=2.0

If “embedded” version information includes 
eight 3s but server supports version 3, issue 
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

2

2



SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol



Summary

Symmetric Crypto
• Encryption
• MACs
• Dedicated Authenticated Encryption Schemes

– GCM (Galois Counter Mode)
– CCM
– OCB

Asymmetric Crypto
• DH
• RSA (encryption and signatures)
• Authenticity of public keys

Protocol rollback attacks



Symmetric Crypto
• Encryption
• MACs
• Dedicated Authenticated Encryption Schemes

– GCM (Galois Counter Mode)
– CCM
– OCB

Asymmetric Crypto
• DH
• RSA (encryption and signatures)
• Authenticity of public keys

Protocol rollback attacks



Back to Software Security



Defenses

 Already discussed Stack Guard:  put canary on 
stack



PointGuard

 Attack: overflow a function pointer so that it points 
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from 

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will 

dereference to a “random” memory address



CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference   [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code



CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer 
    value

0x1234

2. Access data referenced by pointer

PointGuard Dereference  [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
    segmentation fault and crash

Attack
code

1. Fetch pointer 
    value

0x9786

Decrypt

Decrypts to
random value

0x9786



PointGuard Issues

Must be very fast
• Pointer dereferences are very common

 Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values 

end up in memory and can be overwritten there
 Attacker should not be able to modify the key

• Store key in its own non-writable memory page
 PG’d code doesn’t mix well with normal code

• What if PG’d code needs to pass a pointer to OS kernel?



Other solutions to some of these issues

 Use safe programming languages, e.g., Java
• What about legacy C code?
• (Note that Java is not the complete solution)

 Program analysis of source code to find overflows
• Coverity
• Fortify

 Randomize stack location or encrypt return address 
on stack by XORing with random string
• Attacker won’t know what address to use in his or her 

string



Fuzz Testing

 Generate “random” inputs to program
• Sometimes conforming to input structures (file 

formats, etc)
 See if program crashes

• If crashes, found a bug
• Bug may be exploitable

 Surprisingly effective

 Now standard part of development lifecycle



Next slides special thanks to Hovav Shacham and Vitaly Shmatikov



Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection
• Put malicious code in a predictable location in memory, 

usually masquerading as data
• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Defense: prevent execution of untrusted code
• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code
• Ensure that all control transfers are into a trusted, 

approved code image



W⊕X / DEP

Mark all writeable memory locations as non-
executable
• Example: Microsoft’s DEP - Data Execution Prevention
• This blocks many (not all) code injection exploits

Hardware support
• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
• OS can make a memory page non-executable

Widely deployed
• Windows (since XP SP2), Linux (via PaX patches), 

OpenBSD, OS X (since 10.5)



What Does W⊕X Not Prevent?

Can still corrupt stack …
• … or function pointers or critical data on the heap

As long as “saved EIP” points into existing code, 
W⊕X protection will not block control transfer

This is the basis of return-to-libc exploits
• Overwrite saved EIP with address of any library routine, 

arrange memory to look like arguments
May not look like a huge threat

• Attacker cannot execute arbitrary code
• … especially if system() is not available



return-to-libc on Steroids (Hovav 
Shacham, CCS 2007)

Overwritten saved EIP need not point to the 
beginning of a library routine

Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

– Guess what?  Its value is under attacker’s control!  (why?) 

• Use it as the new value for EIP
– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack



Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the 

borrowed code chunks exploitation technique” (2005)
What is this good for?
Answer [Shacham et al.]: everything

• Turing-complete language
• Build “gadgets” for load-store, arithmetic, logic, control 

flow, system calls
• Attack can perform arbitrary computation using 

no injected code at all!

[Shacham et al]



Ordinary Programming

 Instruction pointer (EIP) determines which 
instruction to fetch and execute

Once processor has executed the instruction, it 
automatically increments EIP to next instruction

Control flow by changing value of EIP



Return-Oriented Programming

Stack pointer (ESP) determines which instruction 
sequence to fetch and execute

Processor doesn’t automatically increment ESP
• But the RET at end of each instruction sequence does



No-ops

No-op instruction does nothing but advance EIP
Return-oriented equivalent

• Point to return instruction
• Advances ESP

Useful -- like a NOP sled  



Immediate Constants

 Instructions can encode constants
Return-oriented equivalent

• Store on the stack
• Pop into register to use



Control Flow

Ordinary programming
• (Conditionally) set EIP to new value

Return-oriented equivalent
• (Conditionally) set ESP to new value


