
Tadayoshi Kohno

CSE 484 / CSE M 584 (Winter 2013)

(Continue) Cryptography + (Back
to) Software Security

Thanks to Vitaly Shmatikov, Dan Boneh, Dieter Gollmann, Dan Halperin, John
Manferdelli, John Mitchell, Bennet Yee, and many others for sample slides and

materials ...

Goals for Today

 Cryptography
 Software security (now that you’ve had more

experience with Lab 1)

 HW2 out soon (on cryptography)

Note: Optimizing Exponentiation

 How to compute Mx mod N? Say x=13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M2+1)2 = M4+2

• y = y2 * M mod N // y = (M4+2)2 *M = M8+4+1

 Does anyone see a potential issue?

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1,
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1

Timing attacks
 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has

distribution with “small” variance (due to time for final
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has
distribution with “large” variance (due to time for final
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really

small, ...)

 Strategy: Force user to sign large number of messages
M1, M2, Record timings for signing.

 Iteratively learn bits of key by using above property.

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

Public announcement or public directory
• Risks: forgery and tampering

Public-key certificate
• Signed statement specifying the key and identity

– sigCA(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves his

identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Hierarchical Approach

Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures
Root authority signs certificates for lower-level

authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“AnotherCA”, PKAnotherCA), sigAnotherCA(“Alice”, PKA)

• What happens if root authority is ever compromised?

Many Challenges

Many Challenges
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/

Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid
Trust can be transitive

• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)
sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s private key has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit
card numbers

• Can issue a “delta CRL” containing only updates

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

Convergence

Background observation:
• MITM attacker will have a hard time mounting man-in-

the-middle attacks against all clients around the world
Basic idea:

• Lots of nodes around the world obtaining SSL/TLS
certificates from servers

• Check responses across servers, and also observe
unexpected changes from existing certificates

SSL

What is SSL / TLS?

Transport Layer Security (TLS) protocol, version 1.2
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers (and mail readers
and ...)

Based on Secure Sockets Layers (SSL) protocol,
version 3.0
• Same protocol design, different algorithms

Deployed in nearly every Web browser

SSL / TLS in the Real World

History of the Protocol
 SSL 1.0

• Internal Netscape design, early 1994?
• Lost in the mists of time

 SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

 TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of earlier MAC; can run on any port

 TLS 1.2
• Remove dependencies to MD5 and SHA1

“Request for Comments”

Network protocols are usually disseminated in the
form of an RFC

TLS version 1.0 is described in RFC 5246
 Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers who

will be implementing it and those who will be doing
protocol analysis

• Mixture of informal prose and pseudo-code

TLS Basics

TLS consists of two protocols
• Familiar pattern for key exchange protocols

Handshake protocol
• Use public-key cryptography to establish a shared

secret key between the client and the server
Record protocol

• Use the secret key established in the handshake
protocol to protect communication between the client
and the server

We will focus on the handshake protocol

TLS Handshake Protocol

Two parties: client and server
Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of the

protocol
Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys
and verify each other’s identity

Use public keys to establish a shared secret

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished
switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and
received handshake messages

ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version
• Supported Cryptographic algorithms

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g., RSA or

Diffie-Hellman)

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by
 both client and server
• Strongest cryptographic suite selected
 from those offered by the client

ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer sends public-key certificate
containing either RSA, or
Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

“Core” SSL 3.0 Handshake (Not TLS)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

Version Rollback Attack

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol without finished

message from client)

Server is fooled into thinking it
is communicating with a client
who supports only SSL 2.0

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is not
authenticated
• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode
No support for certificate chains or non-RSA

algorithms, no handshake while session is open

Protocol Rollback Attacks

Why do people release new versions of security
protocols? Because the old version got broken!

New version must be backward-compatible
• Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version in early
designs

Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)

Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left
side of this secret if server
said Versions=2.0

If “embedded” version information includes
eight 3s but server supports version 3, issue
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

2

2

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

Summary

Symmetric Crypto
• Encryption
• MACs
• Dedicated Authenticated Encryption Schemes

– GCM (Galois Counter Mode)
– CCM
– OCB

Asymmetric Crypto
• DH
• RSA (encryption and signatures)
• Authenticity of public keys

Protocol rollback attacks

Symmetric Crypto
• Encryption
• MACs
• Dedicated Authenticated Encryption Schemes

– GCM (Galois Counter Mode)
– CCM
– OCB

Asymmetric Crypto
• DH
• RSA (encryption and signatures)
• Authenticity of public keys

Protocol rollback attacks

Back to Software Security

Defenses

 Already discussed Stack Guard: put canary on
stack

PointGuard

 Attack: overflow a function pointer so that it points
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will

dereference to a “random” memory address

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

PointGuard Issues

Must be very fast
• Pointer dereferences are very common

 Compiler issues
• Must encrypt and decrypt only pointers
• If compiler “spills” registers, unencrypted pointer values

end up in memory and can be overwritten there
 Attacker should not be able to modify the key

• Store key in its own non-writable memory page
 PG’d code doesn’t mix well with normal code

• What if PG’d code needs to pass a pointer to OS kernel?

Other solutions to some of these issues

 Use safe programming languages, e.g., Java
• What about legacy C code?
• (Note that Java is not the complete solution)

 Program analysis of source code to find overflows
• Coverity
• Fortify

 Randomize stack location or encrypt return address
on stack by XORing with random string
• Attacker won’t know what address to use in his or her

string

Fuzz Testing

 Generate “random” inputs to program
• Sometimes conforming to input structures (file

formats, etc)
 See if program crashes

• If crashes, found a bug
• Bug may be exploitable

 Surprisingly effective

 Now standard part of development lifecycle

Next slides special thanks to Hovav Shacham and Vitaly Shmatikov

Buffer Overflow: Causes and Cures

Typical memory exploit involves code injection
• Put malicious code in a predictable location in memory,

usually masquerading as data
• Trick vulnerable program into passing control to it

– Overwrite saved EIP, function callback pointer, etc.

Defense: prevent execution of untrusted code
• Make stack and other data areas non-executable

– Note: messes up useful functionality (e.g., ActionScript)

• Digitally sign all code
• Ensure that all control transfers are into a trusted,

approved code image

W⊕X / DEP

Mark all writeable memory locations as non-
executable
• Example: Microsoft’s DEP - Data Execution Prevention
• This blocks many (not all) code injection exploits

Hardware support
• AMD “NX” bit, Intel “XD” bit (in post-2004 CPUs)
• OS can make a memory page non-executable

Widely deployed
• Windows (since XP SP2), Linux (via PaX patches),

OpenBSD, OS X (since 10.5)

What Does W⊕X Not Prevent?

Can still corrupt stack …
• … or function pointers or critical data on the heap

As long as “saved EIP” points into existing code,
W⊕X protection will not block control transfer

This is the basis of return-to-libc exploits
• Overwrite saved EIP with address of any library routine,

arrange memory to look like arguments
May not look like a huge threat

• Attacker cannot execute arbitrary code
• … especially if system() is not available

return-to-libc on Steroids (Hovav
Shacham, CCS 2007)

Overwritten saved EIP need not point to the
beginning of a library routine

Any existing instruction in the code image is fine
• Will execute the sequence starting from this instruction

What if instruction sequence contains RET?
• Execution will be transferred… to where?
• Read the word pointed to by stack pointer (ESP)

– Guess what? Its value is under attacker’s control! (why?)

• Use it as the new value for EIP
– Now control is transferred to an address of attacker’s choice!

• Increment ESP to point to the next word on the stack

Chaining RETs for Fun and Profit

Can chain together sequences ending in RET
• Krahmer, “x86-64 buffer overflow exploits and the

borrowed code chunks exploitation technique” (2005)
What is this good for?
Answer [Shacham et al.]: everything

• Turing-complete language
• Build “gadgets” for load-store, arithmetic, logic, control

flow, system calls
• Attack can perform arbitrary computation using

no injected code at all!

[Shacham et al]

Ordinary Programming

 Instruction pointer (EIP) determines which
instruction to fetch and execute

Once processor has executed the instruction, it
automatically increments EIP to next instruction

Control flow by changing value of EIP

Return-Oriented Programming

Stack pointer (ESP) determines which instruction
sequence to fetch and execute

Processor doesn’t automatically increment ESP
• But the RET at end of each instruction sequence does

No-ops

No-op instruction does nothing but advance EIP
Return-oriented equivalent

• Point to return instruction
• Advances ESP

Useful -- like a NOP sled

Immediate Constants

 Instructions can encode constants
Return-oriented equivalent

• Store on the stack
• Pop into register to use

Control Flow

Ordinary programming
• (Conditionally) set EIP to new value

Return-oriented equivalent
• (Conditionally) set ESP to new value

