
Tadayoshi Kohno

CSE 484 / CSE M 584 (Winter 2013)

(Continue) Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Cryptography: Now on to asymmetric
cryptography

 HW2 out soon (on cryptography)

(Reminder:) Symmetric Cryptography

 1 secret key (or 2 or 3 or 4), shared between
sender/receiver

 Repeat fast and simple operations lots of times
(rounds) to mix up key and ciphertext

 Why do we think it is secure? (simplistic)
• Lots of heuristic arguments

– If we do lots and lots and lots of mixing, no simple
formula (and reversible) describing the whole
process (cryptographic weakness).

– Mix in ways we think it’s hard to short-circuit all the
rounds. Especially non-linear mixing, e.g., S-boxes.

• Some math gives us confidence in these assumptions

Public Key Cryptography

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Public-Key Cryptography

 Everyone has 1 private key and 1 public key
• Or 2 private and 2 public, when considering

both encryption and authentication
Mathematical relationship between private and

public keys
Why do we think it is secure? (simplistic)

• Relies entirely on problems we believe are
“hard”

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

http://www.wolframalpha.com/ and http://www.google.com

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman
Assuming DDH problem is hard, Diffie-Hellman

protocol is a secure key establishment protocol against
passive attackers
• Eavesdropper can’t tell the difference between established

key and a random value
• Can use new key for symmetric cryptography

– Many times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

Properties of Diffie-Hellman
DDH: not true for integers mod p, but true for other

groups
 DL problem in p can be broken down into DL problems for

subgroups, if factorization of p-1 is known.
 Common recommendation:
• Choose p = 2q+1 where q is also a large prime.
• Pick a g that generates a subgroup of order q in Zp*
–DDH is hard for this group
– (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for
the subgroup of order q
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy mod p) Compute k=H((gx)y)=H(gxy mod p)

Requirements for Public-Key Encryption

Key generation: computationally easy to generate a
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK
Encryption: given plaintext M and public key PK,

easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number
of integers in the [1,n] interval that are relatively
prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1
Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

 Zn*: multiplicative group of integers mod n (integers
relatively prime to n)

Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n); private key = (d,n)

Encryption of m: c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c: cd mod n = (me)d mod n = m

Why RSA Decryption Works (Simplified)
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn* (not all of Zn)
 cd mod n = (me)d mod n
 = m1+k(p-1)(q-1) mod n
 = (m mod n) * (mk(p-1)(q-1) mod n)
 Recall: Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n
 cd mod n = (m mod n) * (1 mod n)
 = m mod n
 But: True for all m in Zn, not just m in Zn*

Why RSA Decryption Works (skip)
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n,
 med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*

Why Is RSA Secure?

 RSA problem: given n=pq, e such that
 gcd(e, ϕ(n))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by taking eth
root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find primes p1, …,
pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy (because
knowing factors means you can compute d -- inverse of e mod
(p-1)(q-1)), but there is no known reduction from factoring to
RSA
• It may be possible to break RSA without factoring n -- but if it is, we

don’t know how

On RSA encryption

Encrypted message needs to be in interpreted as
an integer less than n
• Reason: Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.

But still not quite that simple

Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube

root of c to recover m (i.e., no operations taken module
n)
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy! Need to pre-
process input in some way.

Sample Encryption

 26 2 15 13 7 14 13 13 1 28 14 15 13 14
20 9 6 31 25 26 14 16 23 15 26 2 6 13 1

 P=3, Q=11, N=33, E=7, D=3
 ‘A’ converted to 1 before encryption; ‘B’ Converted to

2 before encryption; ...

A-1 B-2 C-3 D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11 L-12
M-13 N-14 O-15 P-16 Q-17 R-18 S-19 T-20 U-21 V-22
W-23 X-24 Y-25 Z-26

 http://www.wolframalpha.com/ or http://
www.google.com

Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

r⊕H(M⊕G(r))

M⊕G(r)

Summary of RSA

• Defined RSA primitives

• Encryption and Decryption

• Underlying number theory

• Practical concerns, some mis-uses

• OAEP

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

RSA Signatures
Public key is (n,e), private key is d
To sign message m: s = md mod n

• Signing and decryption are the same underlying operation
in RSA

• It’s infeasible to compute s on m if you don’t know d
To verify signature s on message m:
 verify that se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify

signatures produced with d (private key)
 In practice, also need padding & hashing

• Standard padding/hashing schemes exist for RSA signatures

Encryption and Signatures

Often people think: Encryption and decryption are
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods
• And there are many other signing methods

Digital Signature Standard (DSS) (Skim
Details)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract
x (private key) from gx mod p (public key)

DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M

DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q mod
p) mod q

Public key

If they match, signature is valid

Advantages of Public-Key Crypto

 Confidentiality without shared secrets
• Very useful in open environments
• Fewer “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before they can
exchange secret messages

– (With caveats)

 Authentication without shared secrets
• Use digital signatures to prove the origin of messages

 Reduce protection of information to protection of
authenticity of public keys and secrecy of individual private
keys
• No need to keep public keys secret, but must be sure that Alice’s

public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

