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(Continue) Cryptography
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Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...



Goals for Today

 Cryptography:  Now on to asymmetric 
cryptography

 HW2 out soon (on cryptography)



(Reminder:) Symmetric Cryptography

 1 secret key (or 2 or 3 or 4), shared between 
sender/receiver

 Repeat fast and simple operations lots of times 
(rounds) to mix up key and ciphertext

 Why do we think it is secure? (simplistic)
• Lots of heuristic arguments

– If we do lots and lots and lots of mixing, no simple 
formula (and reversible) describing the whole 
process (cryptographic weakness).

– Mix in ways we think it’s hard to short-circuit all the 
rounds. Especially non-linear mixing, e.g., S-boxes.

• Some math gives us confidence in these assumptions



Public Key Cryptography



Basic Problem

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
          2. Bob wants to authenticate himself

public key

public key

Alice Bob



Public-Key Cryptography

 Everyone has 1 private key and 1 public key
• Or 2 private and 2 public, when considering 

both encryption and authentication
Mathematical relationship between private and 

public keys
Why do we think it is secure? (simplistic)

• Relies entirely on problems we believe are 
“hard”



Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)



Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

http://www.wolframalpha.com/ and http://www.google.com 



Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: 
   given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
   given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem: 
   given gx and gy, it’s hard to tell the difference 

between gxy mod p and gr mod p where r is random         



Properties of Diffie-Hellman
Assuming DDH problem is hard, Diffie-Hellman 

protocol is a secure key establishment protocol against 
passive attackers
• Eavesdropper can’t tell the difference between established 

key and a random value
• Can use new key for symmetric cryptography

– Many times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide 
authentication



Properties of Diffie-Hellman
DDH:  not true for integers mod p, but true for other 

groups
 DL problem in p can be broken down into DL problems for 

subgroups, if factorization of p-1 is known.
 Common recommendation:
• Choose p = 2q+1 where q is also a large prime.
• Pick a g that generates a subgroup of order q in Zp*
–DDH is hard for this group
– (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key



Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for 
the subgroup of order q
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy mod p) Compute k=H((gx)y)=H(gxy mod p)





Requirements for Public-Key Encryption

Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK 

given only public key PK
Encryption: given plaintext M and public key PK, 

easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M



Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number 
of integers in the [1,n] interval that are relatively 
prime to n
• Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1
Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

   Zn*: multiplicative group of integers mod n (integers 
relatively prime to n)

Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n);  private key = (d,n)

Encryption of m:  c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c:   cd mod n = (me)d mod n = m



Why RSA Decryption Works (Simplified)
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn* (not all of Zn)
 cd mod n = (me)d mod n 
               = m1+k(p-1)(q-1) mod n
               = (m mod n) * (mk(p-1)(q-1) mod n)
 Recall:  Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n
 cd mod n = (m mod n) * (1 mod n)
               = m mod n
 But:  True for all m in Zn, not just m in Zn*



Why RSA Decryption Works (skip)
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n, 
   med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*



Why Is RSA Secure?

 RSA problem: given n=pq, e such that 
   gcd(e, ϕ(n))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by taking eth 
root of c

• There is no known efficient algorithm for doing this

 Factoring problem: given positive integer n, find primes p1, …, 
pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy (because 
knowing factors means you can compute d -- inverse of e mod 
(p-1)(q-1)), but there is no known reduction from factoring to 
RSA
• It may be possible to break RSA without factoring n -- but if it is, we 

don’t know how



On RSA encryption

Encrypted message needs to be in interpreted as 
an integer less than n
• Reason:  Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.

But still not quite that simple



Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m (i.e., no operations taken module 
n)
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!  Need to pre-
process input in some way.



Sample Encryption

 26 2 15 13     7 14 13 13 1 28 14     15 13          14 
20 9 6 31 25 26 14 16      23 15 26 2              6 13 1

 P=3, Q=11, N=33, E=7, D=3
 ‘A’ converted to 1 before encryption; ‘B’ Converted to 

2 before encryption; ...

A-1 B-2 C-3 D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11 L-12 
M-13 N-14 O-15 P-16 Q-17 R-18 S-19 T-20 U-21 V-22 
W-23 X-24 Y-25 Z-26

 http://www.wolframalpha.com/ or http://
www.google.com 



Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard



OAEP (image from PKCS #1 v2.1)

r⊕H(M⊕G(r))

M⊕G(r)



Summary of RSA

• Defined RSA primitives

• Encryption and Decryption

• Underlying number theory

• Practical concerns, some mis-uses

• OAEP



Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob



RSA Signatures
Public key is (n,e), private key is d
To sign message m:  s = md mod n

• Signing and decryption are the same underlying operation 
in RSA

• It’s infeasible to compute s on m if you don’t know d
To verify signature s on message m:   
    verify that se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)
 In practice, also need padding & hashing

• Standard padding/hashing schemes exist for RSA signatures



Encryption and Signatures

Often people think:  Encryption and decryption are 
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods
• And there are many other signing methods



Digital Signature Standard (DSS) (Skim 
Details)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract 
x (private key) from gx mod p (public key)



DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M



DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod 
p) mod q

Public key

If they match, signature is valid



Advantages of Public-Key Crypto

 Confidentiality without shared secrets
• Very useful in open environments
• Fewer “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before they can 
exchange secret messages

– (With caveats)

 Authentication without shared secrets
• Use digital signatures to prove the origin of messages

 Reduce protection of information to protection of 
authenticity of public keys and secrecy of individual private 
keys
• No need to keep public keys secret, but must be sure that Alice’s 

public key is really her true public key



Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a 

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven 
assumptions)


