CSE 484 / CSE M 584 (Winter 2013)

(Continue) Cryptography
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Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...




Goals for Today

¢ Cryptography: Now on to asymmetric
cryptography
¢ HW?2 out soon (on cryptography)




(Reminder:) Symmetric Cryptography

¢ 1 secret key (or 2 or 3 or 4), shared between
sender/receiver

® Repeat fast and simple operations lots of times
(rounds) to mix up key and ciphertext

¢ Why do we think it is secure? (simplistic)
o Lots of heuristic arguments

— If we do lots and lots and lots of mixing, no simple
formula (and reversible) describing the whole
process (cryptographic weakness).

— Mix in ways we think it's hard to short-circuit all the
rounds. Especially non-linear mixing, e.g., S-boxes.

e Some math gives us confidence in these assumptions




Public Key Cryptography
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Basic Problem

public key
public key : e - private key
1 i \/
o= . I—=
Alice

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself




Public-Key Cryptography
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¢ Everyone has 1 private key and 1 public key

e Or 2 private and 2 public, when considering
both encryption and authentication

¢ Mathematical relationship between private and
public keys

¢ Why do we think it is secure? (simplistic)

e Relies entirely on problems we believe are
“hard”




Applications of Public-Key Crypto

® Encryption for confidentiality

e Anyone can encrypt a message
— With symmetric crypto, must know secret key to encrypt

e Only someone who knows private key can decrypt
e Key management is simpler (or at least different)
— Secret is stored only at one site: good for open environments
© Digital signatures for authentication
e Can “sign” a message with your private key
® Session key establishment

e Exchange messages to create a secret session key
e Then switch to symmetric cryptography (why?)




Diffie-Hellman Protocol (1976)

® Alice and Bob never met and share no secrets

@ Public info: p and ¢

e pis a large prime number, g is a generator of Z,*
- Z2,*={1, 2 ... p-1}; VaEeZ,* 3i such that a=g' mod p
— Modular arithmetic: numbers “wrap around” after they reach p

Pick secret, random X gX ; Pick secret, random Y
mod p
. 5 € |
z gY mod p :
(;
Alice Bob
Compute k=(g¥)*=0" mod p Compute k=(g*)Y=0" mod p

http:// www.wolframalpha.com/ and http://www.google.com
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® Discrete Logarithm (DL) problem:

given g* mod p, it's hard to extract x
e There is no known efficient algorithm for doing this

e This is not enough for Diffie-Hellman to be secure!

€ Computational Diffie-Hellman (C
given g* and @Y, it's hard to com

DH) problem:

oute g*¥ mod p

e ... unless you know x or vy, in which case it's easy

® Decisional Diffie-Hellman (DDH)

problem:

given g* and g, it's hard to tell the difference
between g*¥ mod pand g" mod p Where r is random




Properties of Diffie-Hellman

¢ Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol against
passive attackers

e Eavesdropper can't tell the difference between established
key and a random value

e Can use new key for symmetric cryptography
— Many times faster than modular exponentiation
¢ Diffie-Hellman protocol (by itself) does not provide
authentication




Propertles of Diffie- HeIIman

* DDH not true for mtegers mod p, but true for other
groups
¢ DL problem in p can be broken down into DL problems for
subgroups, if factorization of p-1 is known.
¢ Common recommendation:
e Choose p = 2g+1 where q is also a large prime.
o Pick a g that generates a subgroup of order g in Z,*

- DDH is hard for this group
- (OK to not know all the details of why for this course.)

e Hash output of DH key exchange to get the key




Diffie-Hellman Protocol (1976)

® Alice and Bob never met and share no secrets

@ Public info: p and ¢

e p, q are large prime numbers, p=2g+1, g a generator for
the subgroup of order g
— Modular arithmetic: numbers “wrap around” after they reach p

Pick secret, random X X Pick secret, random Y
g” mod p
. L el
; gY mod p s
(;
Alice Bob

Compute k=H((g"))=H(gY medp) Compute k=H((g*)¥)=H(9"*’ mod p)
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Requirements for Public-Key Encryption
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¢ Key generation: computationally easy to generate a
pair (public key PK, private key SK)

e Computationally infeasible to determine private key SK
given only public key PK

® Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=E(M)

¢ Decryption: given ciphertext C=E(M) and private
key SK, easy to compute plaintext M
e Infeasible to compute M from C without SK

e Even infeasible to learn partial information about M
e Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M




Some Number Theory Facts

@ Euler totient function o(n) where n=1 is the number

of integers in the [1,n] interval that are relatively
prime to n

e Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

@ Euler’s theorem:
if acZ_*, then a«("=1 mod n

Z.*: multiplicative group of integers mod n (integers
relatively prime to n)

® Special case: Fermat’s Little Theorem
if p is prime and gcd(a,p)=1, then a?'=1 mod p




RSA Cry ptOSYSte m [Rivest, Shamir, Adleman 1977]
INEN TR I AR WSS NN TS I AR WS NN T I AR W

-y - - v R W e e o Y - - v R W e ] - n
PR 5 NN S NS B PR 5 NN S NS B o W

® Key generation:

e Generate large primes p, g
— Say, 1024 bits each (need primality testing, too)

e Compute n=pq and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = (d,n)
® Encryption of m: ¢ = m® mod n
e Modular exponentiation by repeated squaring

¢ Decryptionof c: c@mod n = (M9 modn =m




Why RSA Decryptlon Works (Slmpllfled)

0 e d 1 mod cp(n), thus e- d 1+k cp(n) for some k
Can rewrite: e-d=1+k(p-1)(g-1)

¢ Let m be any integer in Z»* (not all of Z»)
¢ c“ mod n = (m®)4 mod n
2 = mitk(P-1)@1) mod n
L 4 = (m mod n) * (mk(P-1(a-1) mod n)
® Recall: Euler’s theorem:

if acZ *, then a«("W=1 mod n

® c“modn=(mmodn) * (1 mod n)
. = m mod n
® But: True for all m in Zn, not just m in Zp*




Why RSA Decryptlon Works (sklp)

#ed=1 mod ¢(n), thus e-d=1+k-¢(n) for some k
Can rewrite: e-d=1+k(p-1)(g-1)

® Let m be any integer in Zn
¢ If gcd(m,p)=1, then m&=m mod p
e By Fermat’s Little Theorem, mP1=1 mod p
e Raise both sides to the power k(g-1) and multiply by m
o mi+tkP-1)Xa-1)=m mod p, thus m&=m mod p
e By the same argument, me=m mod q

¢ Since p and q are distinct primes and p-q=n,
me=m mod n (using the Chinese Remainder Theorem)
@ True for all m in Z,, not just m in Zy*




Why Is RSA Secure?

* given n=pq, € such that

gcd(e, 9(n))=1 and c, find m such that

meé=c mod n
e i.e., recover m from ciphertext c and public key (n,e) by taking eth
root of ¢

e There is no known efficient algorithm for doing this
* problem: given positive integer n, find primes p,, ...,
P, such that n=p,®1p,©2...p, &

¢ If factoring is easy, then RSA problem is easy (because
knowing factors means you can compute d -- inverse of e mod
(p-1)(g-1)), but there is no known reduction from factoring to
RSA

e It may be possible to break RSA without factoring n -- but if it is, we
don’t know how




On RSA encryption

¢ Encrypted message needs to be in interpreted as
an integer less than n

e Reason: Otherwise can't decrypt.
e Message is very often a symmetric encryption key.

@ But still not quite that simple




Caveats
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®e =3 is a common exponent

e If m < n1/3, then ¢ = m3 < n and can just take the cube
root of c to recover m (i.e., no operations taken module

n)

— Even problems if "pad” m in some ways [Hastad]

e Let ¢ = m3 mod ni - same message is encrypted to
three people
— Adversary can compute m3 mod ninznz (using CRT)
— Then take ordinary cube root to recover m

¢ Don't use RSA directly for privacy! Need to pre-
process input in some way.




Sample Encryption

€2621513 714131312814 1513 14
20963125261416 2315262 6131

¢ P=3, Q=11, N=33, E=7, D=3

¢ A’ converted to 1 before encryption; ‘B’ Converted to
2 before encryption; ...

¢ A-1 B-2 C-3D-4 E-5 F-6 G-7 H-8 I-9 J-10 K-11 L-12
M-13 N-14 O-15 P-16 Q-17 R-18 $-19 T-20 U-21 V-22
W-23 X-24 Y-25 Z-26

¢ http://www.wolframalpha.com/ or http://
WWW.google.com




Integrlty in RSA Encryptlon

OPIam RSA does not prowde |ntegr|ty
e Given encryptions of m; and m,, attacker can create
encryption of m;-m,
—(my&) - (m,®) mod n = (M;-m,)® mod n
e Attacker can convert m into mk without decrypting
— (Mm&)* mod n = (M“)® mod n
¢ In practice, OAEP is used: instead of encrypting M,
encrypt MOG(r) : rdH(M®G(r))
e 1 is random and fresh, G and H are hash functions

e Resulting encryption is plaintext-aware: infeasible to
compute a valid encryption without knowing plaintext
— ... iIf hash functions are “good” and RSA problem is hard




OAEP (|mage from PKCS #1 v2 1)
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Summary of RSA

® Defined RSA primitives
® Encryption and Decryption
® Underlying number theory

® Practical concerns, some mis-uses

o OAEP




Digital Signatures: Basic Idea
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Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key




RSA Slgnatures

"PUth key IS (n e), 'prlvate kéy IS d
¢ To sign message m: s = m“ mod n

e Signing and decryption are the same underlying operation
in RSA

e It's infeasible to compute s on m if you don’t know d
@ To verify signature s on message m:

verify that s mod n = (m9)¢ mod n = m

e Just like encryption

e Anyone who knows n and e (public key) can verify
signhatures produced with d (private key)

® In practice, also need padding & hashing
e Standard padding/hashing schemes exist for RSA signatures
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Encryption and Signatures

¢ Often people think: Encryption and decryption are
Inverses.

® That's a common view
e True for the RSA primitive (underlying component)
€ But not one we’ll take

e To really use RSA, we need padding
e And there are many other decryption methods
e And there are many other signing methods




Digital Signature Standard (DSS) (Skim
Details)
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¢ U.S. government standard (1991-94)
e Modification of the ElGamal signature scheme (1985)
¢ Key generation:

e Generate large primes p, q such that q divides p-1
_ 2159 < q < 2160, 2511+64t < p < 2512+64t Where OStS8

o Select hezZ,* and compute g=h®-1/a mod p
e Select random x such 1=x=g-1, compute y=g* mod p

® Public key: (p, g, g, y=g* mod p), private key: x

® Security of DSS requires hardness of discrete log

e If could solve discrete logarithm problem, would extract
X (private key) from g* mod p (public key)
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Compute r = (g¢ mod p) mod g

Private key

Random secret Fk X q >— (I‘,S) is the
petween Dand 4 signature on M

Message g M

Hash function

(SHA-1) Compute s = k'1-(H(M)+x-r) mod q
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Message g M'

t
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Signature ¥-<
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r

Compute w = s"! mod g

Public key

A

'yqg

p) mod g

p- Compare

If they match, signature is valid




Advantages of Public-Key Crypto

¢ Confidentiality without shared secrets
e Very useful in open environments

e Fewer “chicken-and-egg” key establishment problem

— With symmetric crypto, two parties must share a secret before they can
exchange secret messages

— (With caveats)

¢ Authentication without shared secrets
e Use digital signatures to prove the origin of messages

¢ Reduce protection of information to protection of
authenticity of public keys and secrecy of individual private
keys

e No need to keep public keys secret, but must be sure that Alice’s
public key is really her true public key




Disadvantages of Public-Key Crypto

© Calculations are 2-3 orders of magnitude slower
e Modular exponentiation is an expensive computation

e Typical usage: use public-key cryptography to establish a
shared secret, then switch to symmetric crypto
—E.qg., IPsec, SSL, SSH, ...
® Keys are longer

e 1024+ bits (RSA) rather than 128 bits (AES)

@ Relies on unproven number-theoretic assumptions
e What if factoring is easy?
— Factoring is believed to be neither P, nor NP-complete

o (Of course, symmetric crypto also rests on unproven
assumptions)




