CSE 484 / CSE M 584 (Winter 2013)

(Continue) Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Cryptography

Achieving Privacy (Symmetric)

Encryption schemes: A tool for protecting privacy.

Achieving Integrity (Symmetric)

Message authentication schemes: A tool for protecting integrity.

(Also called message authentication codes or MACs.)

CBC Mode: Encryption

Identical blocks of plaintext encrypted differently

- Last cipherblock depends on entire plaintext
 - Still does not guarantee integrity

CBC-MAC

- Not secure when system may MAC messages of different lengths.
 - NIST recommends a derivative called CMAC (not required)

Birthday attacks

Are there two people in the first 1/3 of this classroom that have the same birthday?

- Yes?
- No?

Birthday attacks

Why is this important for cryptography?

- 365 days in a year (366 some years)
 - Pick one person. To find another person with same birthday would take on the order of 365/2 = 182.5 people
 - Expect "collision" -- two people with same birthday -- with a room of only 23 people
 - For simplicity, approximate when we expect a collision as the square root of 365.

• 2¹²⁸ different 128-bit keys (or other random values)

- Pick one key at random. To exhaustively search for this key requires trying on average 2¹²⁷ keys.
- Expect a "collision" after selecting approximately 2⁶⁴ random keys.
- 64 bits of security against collision attacks, not 128 bits.

Broad Class of Hash Functions

- Collisions: h(x)=h(x') for distinct inputs x, x'
- Result of hashing should "look random" (make this precise later)
 - Intuition: half of digest bits are "1"; any bit in digest is "1" half the time

Cryptographic hash function needs a few properties...

One-Way

Intuition: hash should be hard to invert

- "Preimage resistance"
- Let $h(x')=y \in \{0,1\}^n$ for a random x'
- Given y, it should be hard to find any x such that h(x)=y

How hard?

- Brute-force: try every possible x, see if h(x)=y
- SHA-1 (common hash function) has 160-bit output
 - Expect to try 2¹⁵⁹ inputs before finding one that hashes to y.

Collision Resistance

- Should be hard to find distinct x, x' such that h(x)=h(x')
 - Brute-force collision search is only O(2^{n/2}), <u>not</u> O(2ⁿ)
 - For SHA-1, this means O(2⁸⁰) vs. O(2¹⁶⁰)
- Birthday paradox (informal)
 - Let t be the number of values x,x',x"... we need to look at before finding the first pair x,x' s.t. h(x)=h(x')
 - What is probability of collision for each pair x,x'? $1/2^n$
 - How many pairs would we need to look at before finding the first collision?
 O(2ⁿ)
 - How many pairs x,x' total? Choose(t,2)=t(t-1)/2 ~ $O(t^2)$
 - What is t? 2^{n/2}

One-Way vs. Collision Resistance

One-wayness does <u>not</u> imply collision resistance

- Suppose g is one-way
- Define h(x) as g(x') where x' is x except the last bit
 - h is one-way (to invert h, must invert g)
 - Collisions for h are easy to find: for any x, h(x0)=h(x1)

Collision resistance does <u>not</u> imply one-wayness

- Suppose g is collision-resistant
- Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise
 - Collisions for h are hard to find: if y starts with 0, then there are no collisions, if y starts with 1, then must find collisions in g
 - h is not one way: half of all y's (those whose first bit is 0) are easy to invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

- Given randomly chosen x, hard to find x' such that h(x)=h(x')
 - Attacker must find collision for a <u>specific</u> x. By contrast, to break collision resistance it is enough to find <u>any</u> collision.
 - Brute-force attack requires O(2ⁿ) time
 - AKA second-preimage collision resistance
- Weak collision resistance does <u>not</u> imply collision resistance

Which Property Do We Need?

UNIX passwords stored as hash(password)

- One-wayness: hard to recover the/a valid password
- Integrity of software distribution
 - Weak collision resistance (second-preimage resistance)
 - But software images are not really random...
 - Collision resistance if considering malicious developers

Auction bidding

- Alice wants to bid B, sends H(B), later reveals B
- One-wayness: rival bidders should not recover B (this may mean that she needs to hash some randomness with B too)
- Collision resistance: Alice should not be able to change her mind to bid B' such that H(B)=H(B')

Common Hash Functions

MD5 (deprecated)

- 128-bit output
- Designed by Ron Rivest, used very widely
- Collision-resistance broken (summer of 2004)
- RIPEMD-160
 - 160-bit variant of MD5
- SHA-1 (Secure Hash Algorithm) (deprecated)
 - 160-bit output
 - US government (NIST) standard as of 1993-95
 - Also recently broken! (Theoretically -- not practical.)
- SHA-256, SHA-512, SHA-224, SHA-384

SHA-3: Just picked -- not an official standard yet

Basic Structure of SHA-1 (Not Required)

How Strong Is SHA-1?

Every bit of output depends on every bit of input

- Very important property for collision-resistance
- Brute-force inversion requires 2¹⁶⁰ ops, birthday attack on collision resistance requires 2⁸⁰ ops
- Some weaknesses, e.g., collisions can be found in 2⁶³ ops (2005)

HMAC

 Construct MAC by applying a cryptographic hash function to message and key

- Invented by Bellare, Canetti, and Krawczyk (1996)
- Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Recall: Often desire both privacy and integrity. (For SSH, SSL, IPsec, etc.)

But insecure! [BN, Kra]

Assume Alice sends messages:

If $T_i = T_j$ then $M_i = M_j$

Adversary learns whether two plaintexts are equal.

Especially problematic when M_1 , M_2 , ... take on only a small number of possible values.

