
Tadayoshi Kohno

CSE 484 / CSE M 584 (Winter 2013)

(Continue) Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Cryptography

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0
0

Disadvantages
Disadvantage #3: Keys cannot be reused

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

• Generate a random bitmap

• Encode 0 as:

• Encode 1 as:

Visual Cryptography

• Take a black and white bitmap image

• For a white pixel, send the same as the mask

• For a black pixel, send the opposite of the mask

Visual Cryptography

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

• http://www.cl.cam.ac.uk/~fms27/vck/face.gif

Visual Cryptography

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

Background: Permutation

0
1
2

3

0
1
2

3
For N-bit input, 2N! possible permutations
 Idea for how to use a keyed permutation: split

plaintext into blocks; for each block use secret key
to pick a permutation
• Without the key, permutation should “look random”

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Each key defines a different permutation
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

Result should look like a random permutation on the
inputs
• Recall: not just shuffling bits. N-bit block cipher

permutes over 2N inputs.

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES
Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• Theoretical support: After 3 random rounds, ciphertext
indistinguishable from a random permutation if internal F
function is a pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999: EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext

is larger than 128-bit block size

What should we do?

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

Electronic Code Book (ECB) Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

K K K K K

Cipher Block Chaining (CBC) Mode:
Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕
K K K K

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

⊕Initialization
vector ⊕ ⊕ ⊕

K K K K

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

⊕ ⊕ ⊕ ⊕

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,
 totalSize, DESKEY, NULL, DES_ENCRYPT)

K K K K

CBC and Electronic Voting

Counter (CTR) Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Still does not guarantee integrity
 Fragile if ctr repeats

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

K K K K

ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

K K K K

Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes: A tool for protecting privacy.

K K

Adversary

.Message M
.Ciphertext C

Achieving Privacy (Symmetric)

When Is an Encryption Scheme
“Secure”?

Hard to recover the key?
• What if attacker can learn plaintext without learning the

key?
Hard to recover plaintext from ciphertext?

• What if attacker learns some bits or some function of
bits?

Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and infers

that the corresponding plaintexts are identical?
• Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?
Assume that the attacker knows the encryption

algorithm and wants to learn information about
some ciphertext

Main question: what else does attacker know?
• Depends on the application in which cipher is used!

Ciphertext-only attack
Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs
Chosen-plaintext attack (even stronger)

• Can obtain ciphertext for any plaintext of his choice
Chosen-ciphertext attack (very strong)

• Can decrypt any ciphertext except the target
• Sometimes very realistic model

Defining Security (Not Required)
Attacker does not know the key
He chooses as many plaintexts as he wants, and

learns the corresponding ciphertexts
When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

He receives either a ciphertext of M0, or a ciphertext
of M1

He wins if he guesses correctly which one it is

Defining Security (Not Required)

 Idea: attacker should not be able to learn
 even a single bit of the encrypted plaintext
Define Enc(M0,M1,b) to be a function that returns

encrypted Mb

• Given two plaintexts, Enc returns a ciphertext of one or
the other depending on the value of bit b

• Think of Enc as a magic box that computes ciphertexts
on attacker’s demand. He can obtain a ciphertext of any
plaintext M by submitting M0=M1=M, or he can try to
learn even more by submitting M0≠M1.

Attacker’s goal is to learn just one bit b

0 or 1

Chosen-Plaintext Security
(Not Required)
Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
 and outputs bit d and outputs bit d

• Identical except for the value of the secret bit

• d is attacker’s guess of the secret bit
Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |
Encryption scheme is chosen-plaintext secure if this

advantage is negligible for any efficient A

If A “knows” secret bit, he
should be able to make his
output depend on it

“Simple” Example
(Not Required)
Any deterministic, stateless symmetric encryption

scheme is insecure
• Attacker can easily distinguish encryptions of different

plaintexts from encryptions of identical plaintexts
• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts
 C1 ← Enc(X,Y,b); C2 ← Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

Why Hide Everything?
Leaking even a little bit of information about the

plaintext can be disastrous
Electronic voting

• 2 candidates on the ballot (1 bit to encode the vote)
• If ciphertext leaks the parity bit of the encrypted

plaintext, eavesdropper learns the entire vote
Also, want a strong definition, that implies other

definitions (like not being able to obtain key)

