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Goals for Today

 Software security
• Software lifecycle
• Buffer overflow attacks
• Other software security issues

 Lab 1 online on Wednesday
• Make sure to attend section on Thursday!
• Please form groups of 3 people

 Security Reviews / Current Events due Jan 25
• Extra Credit if by Jan 18

 Impressed with the activity on the forums!!



Forum & Homework 1
 Goal:  help develop the “security mindset”
 Best way to learn a foreign language:  move to that 

country and immerse yourself in the language.
 Same thing applies to “security thinking”
 Forum:  opportunity to think about security on a regular 

basis -- outside of class
• Current events
• New product announcements

 Also in forum:
• Security in your everyday life
• Movies / books
• ...



Software Lifecycle (Simplified)

 Requirements
 Design
 Implementation
 Testing
 Use



Software problems are ubiquitous



Software problems are ubiquitous

http://www.wired.com/software/coolapps/news/2005/11/69355



Software problems are ubiquitous

http://www.wired.com/software/coolapps/news/2005/11/69355



Software problems are ubiquitous

Other serious bugs (many others exist)
• US Vicennes tracking software
• MV-22 Osprey
• Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html



Adversarial Failures

 Software bugs are bad
• Consequences can be serious

 Even worse when an intelligent adversary wishes 
to exploit them!
• Intelligent adversaries:  Force bugs into “worst 

possible” conditions/states
• Intelligent adversaries:  Pick their targets

 Buffer overflows bugs:  Big class of bugs
• Normal conditions:  Can sometimes cause systems to 

fail
• Adversarial conditions:  Attacker able to violate security 

of your system (control, obtain private information, ...)



Attacks

Buffer Overflows



A Bit of History: Morris Worm

Worm was released in 1988 by Robert Morris
• Graduate student at Cornell, son of NSA chief scientist
• Convicted under Computer Fraud and Abuse Act, 

sentenced to 3 years of probation and 400 hours of 
community service

• Now an EECS professor at MIT
Worm was intended to propagate slowly and 

harmlessly measure the size of the Internet
 Due to a coding error, it created new copies as fast 

as it could and overloaded infected machines
 $10-100M worth of damage



Morris Worm and Buffer Overflow

One of the worm’s propagation techniques was a 
buffer overflow attack against a vulnerable version 
of fingerd on VAX systems
• By sending special string to finger daemon, worm 

caused it to execute code creating a new worm copy
• Unable to determine remote OS version, worm also 

attacked fingerd on Suns running BSD, causing them 
to crash (instead of spawning a new copy)



More History

 Very common cause of Internet attacks
• In 1998, over 50% of advisories published by CERT (computer 

security incident report team) were caused by buffer overflows
 Morris worm (1988): overflow in fingerd

• 6,000 machines infected
 CodeRed (2001): overflow in MS-IIS server

• 300,000 machines infected in 14 hours
 SQL Slammer (2003): overflow in MS-SQL server

• 75,000 machines infected in 10 minutes (!!)
 ...
 Still ubiquitous, especially in embedded systems



 Buffer is a data storage area inside computer 
memory (stack or heap)
• Intended to hold pre-defined amount of data

– If more data is stuffed into it, it spills into adjacent memory

• If executable code is supplied as “data”, victim’s machine 
may be fooled into executing it – we’ll see how

– Can give attacker control over machine 

 First generation exploits: stack smashing
 Later generations: heaps, function pointers, off-by-

one, format strings and heap management 
structures

Attacks on Memory Buffers



Stack Buffers

 Suppose Web server contains this function
  void func(char *str) {

           char buf[126];
           ...
           strcpy(buf,str);
           ...
      }

 No bounds checking on strcpy()
 If str is longer than 126 bytes

• Program may crash
• Attacker may change program behavior

buf uh oh!



buf authenticated11 ( :-) ! )

Changing Flags

 Suppose Web server contains this function
  void func(char *str) {

           int authenticated = 0;
           char buf[126];
           ...
           strcpy(buf,str);
           ...
      }

 Authenticated variable non-zero when user has 
extra privileges

Morris worm also overflowed a buffer to overwrite 
an authenticated flag in fingerd



Memory Layout

 Text region:  Executable code of the program
 Heap:  Dynamically allocated data
 Stack:  Local variables, function return addresses; 

grows and shrinks as functions are called and 
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom



 Suppose Web server contains this function
  void func(char *str) {

           char buf[126];
           strcpy(buf,str);
      }

When this function is invoked, a new frame with 
local variables is pushed onto the stack

Stack Buffers

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



Memory pointed to by str is copied onto stack…
  void func(char *str) {

           char buf[126];
           strcpy(buf,str);
      }

 If a string longer than 126 bytes is copied into 
buffer, it will overwrite adjacent stack locations

What If Buffer is Overstuffed?

strcpy does NOT check whether the string 
at *str contains fewer than 126 characters

ret/IP Caller’s frame

Addr 0xFF...F

Saved FPbuf

Local variables

str

Args



 Suppose buffer contains attacker-created string
• For example, *str contains a string received from the 

network as input to some network service daemon

When function exits, code in the buffer will be 
executed, giving attacker a shell
• Root shell if the victim program is setuid root

Executing Attack Code

ret/IPSaved FPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly 
instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in

the location where the system
expects to find return address

Caller’s framestr



 Executable attack code is stored on stack, inside 
the buffer containing attacker’s string 
• Stack memory is supposed to contain only data, but…

Overflow portion of the buffer must contain correct 
address of attack code in the RET position
• The value in the RET position must point to the 

beginning of attack assembly code in the buffer
– Otherwise application will (probably) crash with segmentation 

violation

• Attacker must correctly guess in which stack position 
his/her buffer will be when the function is called

Buffer Overflow Issues



Problem: No Range Checking

 strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into buf 

starting from *str until “\0” is encountered, ignoring 
the size of area allocated to buf

Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …) 



 strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n 

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

 Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw); …

 Published “fix”:

   … strncpy(record,user,MAX_STRING_LEN-1);
         strcat(record,”:”);
         strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)



 Published “fix” for Apache htpasswd overflow:

   … strncpy(record,user,MAX_STRING_LEN-1);
         strcat(record,”:”);
         strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer



 Home-brewed range-checking string copy
   void notSoSafeCopy(char *input) {

          char buffer[512]; int i; 
             for (i=0; i<=512; i++)
                 buffer[i] = input[i]; 
        }
        void main(int argc, char *argv[]) {
             if (argc==2) 
                notSoSafeCopy(argv[1]);
        }

Off-By-One Overflow

 1-byte overflow: can’t change RET, but can change 
pointer to previous stack frame
• On little-endian architecture, make it point into buffer
• RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!



 Suppose Web server contains this function
  void func(char *str) {

           char buf[126];
           strcpy(buf,str);
      }

When this function is invoked, a new frame with 
local variables is pushed onto the stack

Stack Buffers

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved FP

Execute code at this address after func() finishes

buf

Local variables

str

Args



 C uses function pointers for callbacks: if pointer to F 
is stored in memory location P, then another 
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied 
input string

Callback
pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)



 Proper use of printf format string:
  … int foo=1234; 

      printf(“foo = %d in decimal, %X in hex”,foo,foo); …
– This will print 
  foo = 1234 in decimal, 4D2 in hex

 Sloppy use of printf format string:
  … char buf[14]=“Hello, world!”; 

      printf(buf);
         // should’ve used printf(“%s”, buf); …

– If buffer contains format symbols starting with %, location 
pointed to by printf’s internal stack pointer will be interpreted as 
an argument of printf.  This can be exploited to move printf’s 
internal stack pointer.

Format Strings in C



%x format symbol tells printf to output data on 
stack

  … printf(“Here is an int:  %x”,i); …

What if printf does not have an argument?
  … char buf[16]=“Here is an int:  %x”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as an int.  (What if crypto key, password, ...?)

Or what about:
  … char buf[16]=“Here is a string:  %s”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as a pointer to a string

Viewing Memory



%x format symbol tells printf to output data on 
stack

  … printf(“Here is an int:  %x”,i); …

What if printf does not have an argument?
  … char buf[16]=“Here is an int:  %x”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as an int.  (What if key, password, ...?)

Or what about:
  … char buf[16]=“Here is a string:  %s”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as a pointer to a string

Viewing Memory



%n format symbol tells printf to write the number 
of characters that have been printed

  … printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

What if printf does not have an argument?
  … char buf[16]=“Overflow this!%n”; 

      printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be 
interpreted as address into which the number of characters will 
be written.

Writing Stack with Format Strings



Using %n to Mung Return Address

RET“… attackString%n”, attack code

Return
execution to
this address

Buffer with attacker-supplied 
input string

Number of characters in
attackString must be equal

to stack address where
attack code starts

 See “Exploting Format String Vulnerabilities” for details

C has a concise way of printing multiple symbols: %Mx will print exactly M bytes 
(taking them from the stack).  If attackString contains enough “%Mx” so that 

its total length is equal to the most significant byte of the address of the attack code, 
this byte will be written into &RET. Repeat three times (four “%n” in total) to write 
into &RET+1, &RET+2, &RET+3, replacing RET with the address of attack code.

This portion contains
enough % symbols
to advance printf’s

internal stack pointer

&RET

Overwrite stack with RET address;
printf(buffer) will write the number of 

characters in attackString into RET

Somewhere on stack (on 
either side of RET)



TOCTOU (Race Condition)

 TOCTOU == Time of Check to Time of Use

 Goal:  Open only regular files (not symlink, etc)
What can go wrong?

int openfile(char *path) { 
struct stat s; 
if (stat(path, &s) < 0) 

return -1; 
if (!S_ISRREG(s.st_mode)) { 

error("only allowed to regular files!"); 
return -1; 

} 
return open(path, O_RDONLY); 

}



TOCTOU (Race Condition)

 TOCTOU == Time of Check to Time of Use

 Goal:  Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat 

and open (and access files he or she shouldn’t)

int openfile(char *path) { 
struct stat s; 
if (stat(path, &s) < 0) 

return -1; 
if (!S_ISRREG(s.st_mode)) { 

error("only allowed to regular files!"); 
return -1; 

} 
return open(path, O_RDONLY); 

}



Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of 
input into buf

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)



Integer Overflow and Implicit Cast

What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);



Timing Attacks

 Assume there are no “typical” bugs in the 
software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing 
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against



Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long
 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Attacker Model
PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some 
standard interface

 Naive:  Try all 2568 = 18,446,744,073,709,551,616 
possibilities

 Better:  Time how long it takes to reject a 
CandidatePasswd.  Then try all possibilities for first 
character, then second, then third, ....
• Total tries:  256*8 = 2048



Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products



Randomness issues

Many applications (especially security ones) 
require randomness

 Explicit uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting 

machine)
• Shuffle cards (for an online gambling site)



C’s rand() Function
 C has a built-in random function:  rand()

unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 

next = seed;

} 

 Problem:  don’t use rand() for security-critical 
applications!
• Given a few sample outputs, you can predict 

subsequent ones





Problems in Practice
One institution used (something like) rand() to 

generate passwords for new users
• Given your password, you could predict the passwords 

of other users
 Kerberos (1988 - 1996)

• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon 

Kerberos for authentication
Online gambling websites

• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?



Images from http://www.cigital.com/news/index.php?pg=art&artid=20
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Images from http://www.cigital.com/news/index.php?pg=art&artid=20



Big news...  CNN, etc..



PS3 and Randomness

 Example Current Event report from a past 
iteration of 484
• https://catalyst.uw.edu/gopost/conversation/kohno/

452868





Other Problems
 Key generation

• Ubuntu removed the randomness from SSL, creating 
vulnerable keys for thousands of users/servers

• Undetected for 2 years (2006-2008)

 Live CDs, diskless clients
• May boot up in same state every time

 Virtual Machines
• Save state:  Opportunity for attacker to inspect the 

pseudorandom number generator’s state
• Restart:  May use same “psuedorandom” value more 

than once



Source:  XKCD





Obtaining Pseudorandom Numbers
 For security applications, want “cryptographically 

secure pseudorandom numbers”
 Libraries include cryptographically secure 

pseudorandom number generators
 Linux:

• /dev/random
• /dev/urandom - nonblocking, possibly less entropy

 Internally:
• Entropy pool gathered from multiple sources



Where do (good) random 
numbers come from?

• Humans: keyboard, mouse input

• Timing: interrupt firing, arrival of packets 
on the network interface

• Physical processes: unpredictable physical 
phenomena



Buffer overflow attacks
void foo (char *argv[])
{
push   %ebp
mov    %esp,%ebp

char buf[128];
sub    $0x88,%esp
mov    0x8(%ebp),%eax

strcpy(buf, argv[1]);
add    $0x4,%eax
mov    (%eax),%eax
mov    %eax,0x4(%esp)
lea    -0x80(%ebp),%eax
mov    %eax,(%esp)
call   804838c <strcpy@plt>

}
leave  
ret    

ret/IP

Saved FP

buf

Caller’s 
stack 
frame

Stack



How to defend against this?
void foo (char *argv[])
{
push   %ebp
mov    %esp,%ebp

char buf[128];
sub    $0x88,%esp
mov    0x8(%ebp),%eax

strcpy(buf, argv[1]);
add    $0x4,%eax
mov    (%eax),%eax
mov    %eax,0x4(%esp)
lea    -0x80(%ebp),%eax
mov    %eax,(%esp)
call   804838c <strcpy@plt>

}
leave  
ret    

ret/IP

Saved FP

buf

Caller’s 
stack 
frame

Stack



Stack Canary (StackGuard)
void foo (char *argv[])
{
int canary = <random>;
char buf[128];
strcpy(buf, argv[1]);
assert(canary unchanged);
}

ret/IP

Saved FP

buf

Caller’s 
stack 
frame Stack

Canary

Any Canary Advice?
• Null byte stops strcpy() bugs
• CR-LF stops gets() bugs
• EOF stops fread() bugs



StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function 

return causes a performance penalty
• For example, 8% for Apache Web server

 PointGuard also places canaries next to function 
pointers and setjmp buffers
• Worse performance penalty

 StackGuard doesn’t completely solve the problem 
(can be defeated) 



Defeating StackGuard (Example, Sketch)

 Idea: overwrite pointer used by some strcpy and 
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy 
BadPointer here


