CSE 484 / CSE M 584 (Winter 2013)

Software Security: Buffer
Overflow Attacks and Beyond

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

¢ Software security
o Software lifecycle
o Buffer overflow attacks
e Other software security issues

¢ Lab 1 online on Wednesday
e Make sure to attend section on Thursday!
e Please form groups of 3 people

¢ Security Reviews / Current Events due Jan 25
o Extra Credit if by Jan 18

¢ Impressed with the activity on the forums!!

A L O ANA A A et RN Bl .
: [.- & “H PN '& - 2 aF. - J s .. a -~ p&

Forum & Homework 1

¢ Goal: help déVé]dp thé_;‘éeE:Urity mindset”

¢ Best way to learn a foreign language: move to that
country and immerse yourself in the language.

¢ Same thing applies to “security thinking”

¢ Forum: opportunity to think about security on a regular
basis -- outside of class
e Current events

e New product announcements

@ Also in forum:

e Security in your everyday life
e Movies / books

S I t L. I I (S. I . I . d)
i AN S ARG R D ANE s AN S NG R b AN e RN ARG R b IS s RN ARG R b NG A AN S NS R ANE

s
(BN

® Requirements
@ Design

¢ Implementation
@ Testing

® Use

Posted by kdawson on Sunday February 25, @06:35PM
from the dare-you-to-cross-this-line dept.

mgh02114 writes

"The new US stealth fighter, the F-22 Haptor, was deployed for the first time to Asia earlier this month. On
Feb. 11, twelve Raptors flying from Hawail to Japan were forced to turn back when a software glitch crashed
all of the F-22s' on-board computers as they crossed the international date line. The delay in arrival in Japan
was previously reported, with rumors of problems with the software. CNN television, however, this morning
reported that every fighter completely lost all navigation and communications when they crossed the
internaticnal date line. They reportedly had to turn around and follow their tankers by visual contact back to
Hawaii. According to the CNN story, if they had not been with their tankers, or the weather had been bad, this would have
been serious. CHNM has not put up anything on their website yet."

Software problems are ubiquitous

— <5 . _ _ F SL AP <5 . _ F SL AP —

1985-1987 -- Therac-25 medical accelerator. A radiation therapy
device malfunctions and delivers lethal radiation doses at several
medical facilities. Based upon a previous design, the Therac-25 was an
"improved" therapy system that could deliver two different kinds of
radiation: either a low-power electron beam (beta particles) or X-rays.
The Therac-25's X-rays were generated by smashing high-power
electrons into a metal target positioned between the electron gun and
the patient. A second "improvement" was the replacement of the older
Therac-20's electromechanical safety interlocks with software control,
a decision made because software was perceived to be more reliable.

What engineers didn't know was that both the 20 and the 25 were
built upon an operating system that had been kludged together by a
programmer with no formal training. Because of a subtle bug called a
"race condition," a quick-fingered typist could accidentally configure
the Therac-25 so the electron beam would fire in high-power mode
but with the metal X-ray target out of position. At least five patients
die; others are seriously injured.

http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

— <5 — <5 . _ =l <5 — <5

January 15, 1990 -- AT&T Network Outage. A bug in a new
release of the software that controls AT&T's #4ESS long distance
switches causes these mammoth computers to crash when they
receive a specific message from one of their neighboring machines -- a
message that the neighbors send out when they recover from a crash.

One day a switch in New York crashes and reboots, causing its
neighboring switches to crash, then their neighbors' neighbors, and so
on. Soon, 114 switches are crashing and rebooting every six seconds,
leaving an estimated 60 thousand people without long distance service
for nine hours. The fix: engineers load the previous software release.

http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ublqmtous

-_~: c£ . F . F c£ . F c£

0 Other Serious bugs (many others eX|st)
e US Vicennes tracking software
e MV-22 Osprey
e Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html

‘ \d . I I . I
NN T G T VN NN T e T W T NN T3 o ™ oy P

NS s NN - ar NS s NN - ar NS s NN - ar FENE s NN NS R A NS A NN NS R SNE Y

¢ Software bugs are bad
e Conseqguences can be serious

® Even worse when an intelligent adversary wishes

to exploit them!
o Intelligent adversaries: Force bugs into “worst
possible” conditions/states

e Intelligent adversaries: Pick their targets

¢ Buffer overflows bugs: Big class of bugs
e Normal conditions: Can sometimes cause systems to
fail
e Adversarial conditions: Attacker able to violate security
of your system (control, obtain private information, ...)

Attacks

Buffer Overflows

A Bit of History: Morris Worm

¢ Worm was released in 1988 by Robert Morris
e Graduate student at Cornell, son of NSA chief scientist

e Convicted under Computer Fraud and Abuse Act,
sentenced to 3 years of probation and 400 hours of
community service

e Now an EECS professor at MI

¢ Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

® Due to a coding error, it created new copies as fast
as it could and overloaded infected machines

¢ $10-100M worth of damage

Morris Worm and Buffer Overflow

el S 2 el S 2 el S 2 el S 2 el S 2

¢ One of the worm’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems

e By sending special string to finger daemon, worm
caused it to execute code creating a new worm copy

e Unable to determine remote OS version, worm also
attacked fingerd on Suns running BSD, causing them

to crash (instead of spawning a new copy)

More History

L T L T "N B Wl TN B i W "N B Wl TN B i W »
. SRS RIS BNE 8 AN NS RIS BNE 8 AN NEEGS JRir e B

¢ Very common cause of Internet attacks

e In 1998, over 50% of advisories published by CERT (computer
security incident report team) were caused by buffer overflows

¢ Morris worm (1988): overflow in fingerd
e 6,000 machines infected

® CodeRed (2001): overflow in MS-IIS server
e 300,000 machines infected in 14 hours

¢ SQL Slammer (2003): overflow in MS-SQL server
e 75,000 machines infected in 10 minutes (!!)
L S

¢ Still ubiquitous, especially in embedded systems

Attacks on Memory Buffers

e N B W
s s s RO AT A, A i s »

¢ Buffer is a data storage area inside computer
memory (stack or heap)

e Intended to hold pre-defined amount of data
— If more data is stuffed into it, it spills into adjacent memory

o If executable code is supplied as “data”, victim’s machine
may be fooled into executing it — we’ll see how

— Can give attacker control over machine
@ First generation exploits: stack smashing

¢ Later generations: heaps, function pointers, off-by-
one, format strings and heap management
structures

Stack Buffers

(BNE G SN NG R b NS 6 AN S NSNS R b SNE s BN NG R b NS s AN S N R b NG s RN A R NS

buf uh oh!

¢ Suppose Web server contains this function

void func(char *str) {

char buf[l126];
strcpy (buf,str) ;

}
€ No bounds checking on strcpy()
@ If str is longer than 126 bytes
e Program may crash
e Attacker may change program behavior

Changing Flags

(BNE G SN NG R b NS 6 AN S NSNS R b SNE s BN NG R b NS s AN S N R b NG s RN A R NS

buf | () !)

¢ Suppose Web server contains this function

void func(char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

€ Morris worm also overflowed a buffer to overwrite
an authenticated flag in fingerd

Memory Layout
® Text region: Executable code of the program
® Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Text region Stack

Addr 0x00...0 Addr OxFF..F

(BNE G NN NG R S NS A AN NG i " SN

}

S s W NS

- -
a2

¢ Suppose Web server contains this function
void func(char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

buf

Saved FP‘ret/IP‘ S Caller’s frame

J

_—\

Y
Local variables

| A% Addr OxFF.F

Execute code at this address after func() finishes

What If Buffer is Overstuffed?

(BNE G SN NG R b NS 6 AN S NSNS R b SNE s BN NG R b NS s AN S N R b NG s RN A R NS

¢ Memory pointed to by str is copied onto stack...

void func(char *str) {

. strcpy does NOT check whether the string
char buf [12 6] ! 4 at *str contains fewer than 126 characters
strcpy (buf,str) ;

}

¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

Caller’s frame

Addr OxFF..F

\ J
v
Local variables

Args

Executlng Attack Code

NS 0 WON S NESGS M e NS 0 WON S NESGS M e NS 0 WON S NESGS M e NS 0 NN NS

0 Suppose buffer contams attacker created string

e For example, *str contains a string received from the
network as input to some network service daemon

SE s RN NG RSN Y

iy Caller’s frame

Addr OxFF..F
N
Attacker puts actual assembly In the overflow, a pointer back
instructions into his input string, e.g., into the buffer appears in
binary code of execve("/bin/sh”) the location where the system
expects to find return address

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Buffer Overflow Issues

YO) e W '
't n - 't n - 't n - e e e P D RNE G NN NS S s 2

® Executable attack code is stored on stack, inside
the buffer containing attacker’s string

e Stack memory is supposed to contain only data, but...

¢ Overflow portion of the buffer must contain correct
address of attack code in the RET position
e The value in the RET position must point to the

beginning of attack assembly code in the buffer

— Otherwise application will (probably) crash with segmentation
violation

e Attacker must correctly guess in which stack position
his/her buffer will be when the function is called

]
|
BNE s N NG R D" NS 6 AN NS R D" SNE s BN NG R b IS 04 AN S NS A" SNE J RSN NS S

e -y - »
o 200 >N

@ strcpy does not check input size

o strcpy(buf, str) simply copies memory contents into buf
starting from *str until "\0"” is encountered, ignoring
the size of area allocated to buf

¢ Many C library functions are unsafe
e strcpy(char *dest, const char *src)
e strcat(char *dest, const char *src)
o gets(char *s)
e scanf(const char *format, ...)
e printf(const char *format, ...)

(BNE 6 BN s NS R b BNE i RN NSNS R D BN s AN S ARG A S SN A AN ARG R SN S

~w AR N L -y LA R
& DR NS R b NG

¢ strncpy(char *dest, const char *src, size_t n)

o If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

® Potential overflow in htpasswd.c (Apache 1.3):

strcpy(record,user);

Copies username (“user”) into buffer (“record”),
Strcat(record et then appends “:” and hashed password (“cpw”)
strcat(record,cpw) .

@ Published “fix":

N strncg (record, user MAX STRING LEN-1) ;
strca %record ;

strncat (record, cpw MAX STRING LEN-1); ..

Misuse of strncpy in htpasswd “Fix”

o, N« WAL e W - P o WL TS T e i N B - P o WL TS T e i N B - P o WL TS T e i N B - P o WL TS e N R
L S B AN NS b o ..)&.’L DA e NS b o ..)&.’L DA e NS b o ..)&.’L DA e NS b o ..)&.’L DA e NS b o 2

® Published “fix” for Apache htpasswd overflow:

N strncg (record,user MAX STRING LEN-1) ;
strca %record ”'”) ;

strncat (record,cpw, MAX STRING LEN-1) ;

MAX_STRING_LEN bytes allocated for record buffer

—
~_ ~
1
contents of *user : contents of *cpw
AN L /\
J W, — N
IL Again put up to MAX_STRING_LEN-1

Put up to MAX_STRING_LEN-1
characters into buffer

characters into buffer

Off-By-One Overflow
(BNE 5 RN NG RS SNE 0 NN NS R b SNE s N NG R b SN 4

NE s R NS R b BN A NN NS R SNE

¢ Home-brewed range-checking string copy
void notSoSafeCopy (char *input) ({

- . This will copy 513
char buffer([512]; int i; characters into

for (1=0; 5@512; i++) buffer. Oops!
buffer[i] = input|[i];

}
void main (int argc, char *argv|[]) {
if (argc==2)
notSoSafeCopy (argv([1l]) ;

}
¢ 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame
e On little-endian architecture, make it point into buffer
e RET for previous function will be read from buffer!

(BNE G NN NG R S NS A AN NG i " SN

}

S s W NS

- -
a2

¢ Suppose Web server contains this function
void func(char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

buf

Saved FP‘ret/IP‘ S Caller’s frame

J

_—\

Y
Local variables

| A% Addr OxFF.F

Execute code at this address after func() finishes

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer
- —= e A \
Heap attack code overflow
A

|

Legitimate function F

(elsewhere in memory)

Format Strings in C

(BNE G SN NG R b NS 6 AN S NSNS R b SNE s BN NG R b NS s AN S N R b NG s RN A R NS

@ Proper use of printf format string:
. int foo=1234;

printf (“foo = %d in decimal, %X in hex”,foo,foo); ..

— This will print

foo = 1234 in decimal, 4D2 in hex

@ Sloppy use of printf format string:

.. char buf[l4]=“Hello, world!”;

printf (buf) ;
// should’ve used printf (“%$s”, buf); ..

— If buffer contains format symbols starting with %, location
pointed to by printf’s internal stack pointer will be interpreted as
an argument of printf. This can be exploited to move printf’s
internal stack pointer.

V. . M
(BN 6 RSN s NS R b BNE S RN S NSNS R S BN s RSN S A

S K wr wr RS SNE 5 NN e NG R b IS s RSN S Rt NS

® %x format symbol tells printf to output data on
stack

.. printf (“Here is an int: %x”,1i), ..

¢ What if printf does not have an argument?

.. char buf[l6]=“"Here is an int: $%x”;

printf (buf); ..

¢ Or what about:

.. char buf[l6]=“Here is a string: %s”;

printf (buf) ; ..

\/. . PJ|
NG s N NS R b SNE 0 AN NG R b SNE I AN e A

P RS SN 6 WA e NSNS R D SNE s N S NS b SN Y

® %x format symbol tells printf to output data on
stack

.. printf (“Here is an int: %x”,1i), ..

¢ What if printf does not have an argument?

.. char buf[l6]=“"Here is an int: $%x”;

printf (buf); ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if key, password, ...?)

¢ Or what about:

.. char buf[l6]=“Here is a string: %s”;

printf (buf) ; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

W . t - St k . t I I I t St .
(BNE 6 BN s NS R b BNE 0 RN S AR SGS R S BNS s AN S ARG R b BNE A RN S AR R BN S s AN S NSNS R b AN

® %n format symbol tells printf to write the number
of characters that have been printed

.. printf (“Overflow this!%n”, &myVar) ; ..

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)
¢ What if printf does not have an argument?

.. char buf[l6]="Overflow this!%n”;

printf (buf); ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will
be written.

Using %n

N W - N W -

— s . & - . _ —at. n a

This portion contains
enough % symbols

to advance printf’s Buffer with attacker-supplied
internal stack pointer

to Mung Return Address

N W -
— _ .

input string
\ \ A
\ N
N “... attackString%n”, attack code &RET RE
AN PN /

_/ N\
Number of characters in
attackString must be equal
to stack address where
attack code star

Somewhere on stack (on
either side of RET)

Return
execution to
this address

C has a concise way of printing multiple symbols: %Mx will print exactly M bytes
(taking them from the stack). If attackString contains enough “%Mx” so that
its total length is equal to the most significant byte of the address of the attack code,
this byte will be written into &RET. Repeat three times (four “%n" in total) to write
into &RET+1, &RET+2, &RET+3, replacing RET with the address of attack code.

¢ See for details

TOCTOU (Race Condition)

® TOCTOU == Time of Check to Time of Use

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY);

}
® Goal: Open only regular files (not symlink, etc)
¢ What can go wrong?

TOCTOU (Race Condition)

® TOCTOU == Time of Check to Time of Use

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY);

}
® Goal: Open only regular files (not symlink, etc)

¢ Attacker can change meaning of path between stat
and open (and access files he or she shouldn’t)

Integer Overflow and ImpI|C|t Cast

-t

char buf[80],
volid vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

¢ If len is negative, may copy huge amounts of
input into buf

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

size t len = read int from network();

char *buf;
buf = malloc(len+5);
read(fd, buf, len);

¢ What if len is large (e.g., len = OxFFFFFFFF)?

¢ Then len + 5 = 4 (on many platforms)

® Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Timing Attacks

¢ Assume there are no “typical” bugs in the
software

e No buffer overflow bugs

e No format string vulnerabilities
e Good choice of randomness

e Good design

® The software may still be vulnerable to timing
attacks

o Software exhibits input-dependent timings
¢ Complex and hard to fully protect against

AN LT T R R VL TR Wl b e il W R R VL TR Wl b e il W 2 &
NS e D RNE G NN NS S D RNE G NN NS S s 2

Password Checker

S W T - - e Bor i W W - - 2 e Bor i W W »
ot u [y ot u [y ot u a . o ..)&.’L DA e NS b o ..)&.’L DA e NS b ERNE

® Functional requirements

e PwdCheck(RealPwd, CandidatePwd) should:
— Return TRUE if RealPwd matches CandidatePwd
— Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

¢ Implementation (like TENEX system)

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to 8do
if (RealPwd[i] != CandidatePwd][i]) then
return FALSE
return TRUE

@ Clearly meets functional description

Attacker Model

PwdCheck(ReaIPwd CandldatePwd) // both 8 chars
fori=1to8do
if (RealPwd[i] != CandidatePwd][i]) then
return FALSE
return TRUE

¢ Attacker can guess CandidatePwds through some
standard interface

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities
® Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then third,

e Total tries: 256*8 = 2048

- A W e -~ T
"2 b
al S el .. s 2

Other Examples

- pa— . - T Y T - T Y ~m
NS 4 AN > el | Sl S 0 NN o NS I b ANE I NN o NESGS Iw e SNE 5 NN e NG Wi NS

¢ Plenty of other examples of timings attacks

e AES cache misses
— AES is the “"Advanced Encryption Standard”
— It is used in SSH, SSL, IPsec, PGP, ...

e RSA exponentiation time
— RSA is a famous public-key encryption scheme
— It's also used in many cryptographic protocols and products

Randomness issues

el S 2 el S 2 el S 2

Al 0 S Ll RN L Sl

Y Y T . R e
g S B AN e NS o DC RN S o SUANE A NS S s 2

¢ Many applications (especially security ones)
require randomness

¢ Explicit uses:
e (Generate secret cryptographic keys
e Generate random initialization vectors for encryption

€ Other “non-obvious” uses:
e Generate passwords for new users

e Shuffle the order of votes (in an electronic voting
machine)

e Shuffle cards (for an online gambling site)

C’s rand() Function

0 C has a bunt—m random functlon rand()
unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {
next = next * 1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}
® Problem: don’t use rand() for security-critical
applications!

e Given a few sample outputs, you can predict
subsequent ones

Quote

PS3 Exploit
Today, January 3rd, George “Geohot” Hotz found and released the private root key for Sony's

.« Playstation 3 (PS3) video game console (http://www.geohot.com/). What this means is that homebrew
software enthusiasts, scientists, and software pirates can now load arbitrary software on the PS3 and
sign it using this key, and the system will execute it as trusted code. Legitimately, this allows Linux and
other operating systems to take advantage of the PS3's cell processor architecture; however, it also
opens up avenues of software piracy previously impossible on Sony's system without requiring any
hardware modifications to the system (previous access of this kind required a USB hardware dongle)

How it Was Done

This was enabled by a cryptographic error by Sony developers in their update process. In the DSA
signature algorithm, a number k is chosen from a supposedly random source for each signed message.
So long as the numbers are unique, the system is secure, but duplicating a random number between
messages can expose the private key to an untrusted party using simple mathematics
(http://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/). Sony used the exact same
“random value” k for all updates pushed to the system, making the signature scheme worthless.

The Most Secure

After Sony removed the “other OS" functionality of the PS3, greater scrutiny was placed on the PS3.
Since it's release in 2006, the Playstation 3 was considered the most secure of the three major video
game consoles, as it was the only console without a “root” compromise in the four years since release
(there were vulnerabilities limited to specific firmware or that required specialized hardware, but nothing
that provided unfettered access). By comparison, Microsoft's Xbox 360 was cracked over 4 years ago
(http://www.theregister.co.uk/2007/03/01/xbox_hack), and the Wii was cracked over 2 years ago
(http://wiibrew.org/wiki/Index.php).

Cullen Walsh
Mark Jordan
Peter Lipay

Problems in Practice

c£ &~ c£

0 One |nst|tut|on used (somethlng Ilke) rand() to
generate passwords for new users

e Given your password, you could predict the passwords
of other users

® Kerberos (1988 - 1996)

e Random number generator improperly seeded

e Possible to trivially break into machines that rely upon
Kerberos for authentication

¢ Online gambling websites
e Random numbers to shuffle cards
e Real money at stake
e But what if poor choice of random numbers?

B A World of Action!

Options
Sit Out

Leave £84330

mamajoe: Hey guys, Big B iz in!

anajoee

Diealer Text

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

fe PokerGUI

Site Parameterz Feazet | Eatie] Game Farameters
Hour Offzet 4 Flop Murn Players [3 -
Mirwte Offset R - —
our Fozition -
1404 N2 o e | |14 ! bat
Second Offset Rz +++ +++ TR R o 1h
il
> & * L &
i * & & i
S huffle Button | L B < ¥ £ Flop JJs |9c |2d

Time |1 E:21:40 Show Cards

FOLD | FOLD | FOLD FOLD FOLD FOLD FOLD FOLD 3 1 2
a
*
*
4
*
*
l l l l l l *e?
Flaper 3

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

B A World of Action!

anajoee

Options

Sit Qut e mamajoe: Hey guys, Big B is in!

Diealer Text

Leave E84330

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

B A World of Action!

anajoee

Options

Sit Qut e mamajoe: Hey guys, Big B is in!

Diealer Text

Leave E84330

Big news... CNN, etc..

PS3 and Randomness

L T T et T R T, T T
—a - £ al - —a - 2ot u SN e DERNE G AN SN e s 2

¢ Example Current Event report from a past
iteration of 484

e https://catalyst.uw.edu/gopost/conversation/kohno/
452868

Quote

PS3 Exploit
Today, January 3rd, George “Geohot” Hotz found and released the private root key for Sony's

.« Playstation 3 (PS3) video game console (http://www.geohot.com/). What this means is that homebrew
software enthusiasts, scientists, and software pirates can now load arbitrary software on the PS3 and
sign it using this key, and the system will execute it as trusted code. Legitimately, this allows Linux and
other operating systems to take advantage of the PS3's cell processor architecture; however, it also
opens up avenues of software piracy previously impossible on Sony's system without requiring any
hardware modifications to the system (previous access of this kind required a USB hardware dongle)

How it Was Done

This was enabled by a cryptographic error by Sony developers in their update process. In the DSA
signature algorithm, a number k is chosen from a supposedly random source for each signed message.
So long as the numbers are unique, the system is secure, but duplicating a random number between
messages can expose the private key to an untrusted party using simple mathematics
(http://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/). Sony used the exact same
“random value” k for all updates pushed to the system, making the signature scheme worthless.

The Most Secure

After Sony removed the “other OS" functionality of the PS3, greater scrutiny was placed on the PS3.
Since it's release in 2006, the Playstation 3 was considered the most secure of the three major video
game consoles, as it was the only console without a “root” compromise in the four years since release
(there were vulnerabilities limited to specific firmware or that required specialized hardware, but nothing
that provided unfettered access). By comparison, Microsoft's Xbox 360 was cracked over 4 years ago
(http://www.theregister.co.uk/2007/03/01/xbox_hack), and the Wii was cracked over 2 years ago
(http://wiibrew.org/wiki/Index.php).

Cullen Walsh
Mark Jordan
Peter Lipay

Other Problems

O.Key genekatlon

e Ubuntu removed the randomness from SSL, creating
vulnerable keys for thousands of users/servers

o Undetected for 2 years (2006-2008)

® Live CDs, diskless clients
e May boot up in same state every time

¢ Virtual Machines

e Save state: Opportunity for attacker to inspect the
pseudorandom number generator’s state

e Restart: May use same “psuedorandom” value more
than once

/I'u. JUST COMENT
OUT THESE LINES...

&

J/MD _update(&m, buf, j):

P

e

IN THE RUSH TO CLEAN
VP THE DEBIAN -OPENSSL
FIRSCO, A NUMBER OF OTHER
MAJOR SECURITY HOLES
HAVE BEEN UNCOVERED:

// do_not_crash ();

%2

//prevent _211();

ng

AFFECTED
SYSTEM SECURITY PROBLEM
VULNERABLE. TO CERTAIN
FEDORA CORE nrropER. RINGS
XANDROS GIVES ROOT ACCESS IF
(eee Pc) ASKED IN STERN VOICE
GENTOO VULNERABLE T0 FLATTERY
VULNERABLE TO JEFF
OLPC 05 | GOLDBLUM'S POWERBOOK
GIVES ROOT ACCESS IF USER
SLACKWARE SAYS ELVISH WORD FOR “FRIEND'
TURNS OUT DISTRO 15
UBUNTU ACTUALLY JUST WINDOWS VISTA

WITH A FEW CUSTOM THEMES

Source: XKCD

DILBERT By Scort Apawms

TOUR OF ACCOUNTING

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.

www. dlibert.com ecottademe @ solcom

NINE NINE
NINE NINE
NINE NINE

'GfA!lo. € 200! United Feature Syndicate. Ine

e

THAT'S THE
PROBLEM

WITH RAN-
DOMNESS:
YOU CAN

NEVER BE
SURE.

Obtalnlng Pseudorandom Numbers

‘: c£ c£ ' ‘: c£

0 For securlty appllcatlons want cryptographlcally
secure pseudorandom numbers”

@ Libraries include cryptographically secure
nseudorandom number generators
@ Linux:

e /dev/random

e /dev/urandom - nonblocking, possibly less entropy
¢ Internally:

e Entropy pool gathered from multiple sources

Where do (good) random
numbers come from!

® Humans: keyboard, mouse input

® Timing: interrupt firing, arrival of packets
on the network interface

® Physical processes: unpredictable physical
phenomena

Buffer overflow attacks

void foo (char *argv[])

{

push %ebp
mov %esp, sebp

char buf[128];

sub S0x88, %esp
mov 0x8 (%ebp), %eax
strcpy(buf, argv[1]);

add S0x4, %eax

mov (%eax), 3eax

mov 3eax,0x4 (%esp)
lea -0x80 (%ebp), %eax
mov zeax, (sesp)

call 804838c <strcpy@plt>

}

leave
ret

Stack
Caller’s
stack
frame
ret/IP
Saved FP| '

How to defend against this!?

void foo (char *argv[]) Caller’s BT ¢

{ . stack

push %ebp

mov %esp, sebp frame

char buf[128]; ret/IP

sub S0x88, %esp

mov 0x8(%ebp), %$eax Saved FP \ 4

strcpy(buf, argv[1]);

add S0x4, %eax

mov (%eax), 3eax

mov 3eax,0x4 (%esp)
lea -0x80 (%ebp), %eax
mov zeax, (%sesp)

call 804838c <strcpy@plt>

}

leave
ret

Stack Canary (StackGuard)

Caller’s

void foo (char *argv[])

{

int canary = <random>;
char buf[128];

strcpy(buf, argv[1]);
assert(canary unchanged);

}

Any Canary Adyvice?
* Null byte stops strcpy() bugs
* CR-LF stops gets() bugs
* EOF stops fread() bugs

stack

et Stack

ret/IP

Saved FP

Canary \ /

StackGuard Implementation

¢ StackGuard requires code recompilation

¢ Checking canary integrity prior to every function
return causes a performance penalty
e For example, 8% for Apache Web server

® PointGuard also places canaries next to function
pointers and setjmp buffers

e Worse performance penalty

¢ StackGuard doesn’t completely solve the problem
(can be defeated)

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - sfp | RET

a_l
Suppose program contains strcpy(dst,buf) Return execution to

0% DZOZOZ ZOZOZOZ(
NZING

DA RO

BadPointer, éttack code [RET

/ \
Overwrite destination of strcpy with RET position / strcpy will copy

BadPointer here

