
Web Security

XSS – Cross-Site Scripting

• Idea: Place user provided data in the page

• Pros: makes pages more interactive and
personal

• Cons: improperly used data could be
interpreted as code

• Solutions: Make sure that user data is
sanitized and validated

XSSI – Cross-Site Script Inclusion

• Idea: Browsers can prevent pages from one
domain to read from pages in another domain
– Do not prevent pages from referencing resources

in other domains (specifically images and scripts)

• Allows an attacker to load their information
(via images) or to run their scripts on your site
even if you try to block them

• Solution: Make sure the code comes from a
trusted site

XSRF – Cross-Site Request Forgery

• Sites will try to protect themselves by only
accepting requests that include the proper
cookie

• Problem: if the cookie is stolen then an
attacker can fake any request and the site will
run it

• Solutions: inspect the header, require user-
provided secret, add nonce token, etc.

HTTP State

• HTTP is a stateless protocol

– This means the state machine for the protocol is
very simplistic (request and response)

• However, developers want state in order to
build staged user experiences

– Creates a much better user experience.

• Solution: provide state to user and have them
echo it back in all future requests.

Option 1: Hidden Fields

• Let's give the user hidden fields that will hold
state variables for us to use on later requests

<html>

 <head>

 <title>Pay for Pizza</title>

 </head>

 <body>

 <form action="submit_order" method="GET">

 <p> The total cost is 5.50. Are you sure you

 would like to order? </p>

 <input type="hidden" name="price" value="5.50">

 <input type="submit" name="pay" value="yes">

 <input type="submit" name="pay" value="no">

 </form>

 </body>

</html>

Option 1: Problems

Web
Browser
(Client)

Web
Server

Credit
Card

Payment
Gateway

Order 1 Pizza

Confirm $5.50
Submit
Order
$5.50

Attacker will modify

Price stored in hidden
form variable

Option 1: Problems

Web
Browser
(Client)

Web
Server

Credit
Card

Payment
Gateway

Order 1 Pizza

Confirm $5.50
Submit
Order
$0.01

Attacker modified price!

Option 2: Cookies

• Stores state on the client side in a special file

• File can only be accessed by code from the
same domain

Option 2: Problems

• Cookies can be sniffed from HTTP requests

• Cookies can be stolen from injected scripts

– LAB 2!

• Not a huge improvement over option 1,
except that parameters are not directly visible
in Get requests

Option 3: Sessions

• Let’s store state on the server side and only
give the user an identifier for it

• Place identifier in a cookie, making it harder to
gather

• Make the session id a hash of the user’s IP
address and a nonce, making it harder to
spoof

Option 3: Problems

• All user state is stored server side

– This can add up to a lot of data for large sites

• Search for a user’s session data can make the
response time very large

• Sessions need to expire, otherwise they could
be used by an attacker

• Putting the session id in a cookie does not
eliminate XSRF attacks

