CSE 484 / CSE M 584 (Spring 2012)

Network Security

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Network security

(Some) Malicious Goals

Launch undetectable attacks

Probe for vulnerabilities

Spy on/tamper with traffic

Impersonate servers/users

Identify anonymous users

Detecting attacks

User

 Problem: IP packets contain source IP address

Launch undetectable attacks

• **Solution:** Spoof IP address

Inferring DDOS (Moore, Voelker, Savage '01)

Finding vulnerabilities

User

Probe for vulnerabilities

- Many, many tools
- One example: Nmap
 - Many services have known TCP/UDP ports
 - These give away what services you're running

Nmap example

% nmap dsp.cs.washington.edu

Starting Nmap 5.51 (http://nmap.org) at 2011-12-05 14:05 PST Nmap scan report for dsp.cs.washington.edu (128.208.4.246) Host is up (0.0062s latency).

Not shown: 996 closed ports

PORT STATE SERVICE
22/tcp open ssh
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds

Nmap done: I IP address (I host up) scanned in 1.36 seconds

Nmap example

% nmap aqua.cs.washington.edu

```
Starting Nmap 5.51 (<a href="http://nmap.org">http://nmap.org</a> ) at 2011-12-05 14:06 PST
Nmap scan report for aqua.cs.washington.edu (128.208.4.187)
Host is up (0.0022s latency).
Not shown: 990 filtered ports
PORT STATE SERVICE
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1027/tcp open IIS
1028/tcp open unknown
1048/tcp open neod2
3389/tcp open ms-term-serv
```

Nmap done: I IP address (I host up) scanned in 5.29 seconds

Fingerprinting users

Server

Identify anonymous users

- Browser
- Clocks
- More

Browser example http://panopticlick.eff.org/

Clocks

Security Issues in TCP/UDP

- Network packets pass through/by untrusted hosts
 - Eavesdropping (packet sniffing)
 - Modifications
- ◆ IP addresses are public
 - Smurf attacks
 - Anonymity?
- TCP connection requires state
 - SYN flooding
- ◆TCP state is easy to guess
 - TCP spoofing and connection hijacking

Smurf Attack

Solution: reject external packets to broadcast addresses

TCP Handshake

SYN Flooding Attack

SYN Flooding Explained

- Attacker sends many connection requests with spoofed source addresses
- Victim allocates resources for each request
 - Connection state maintained until timeout
 - Fixed bound on half-open connections
- Once resources exhausted, requests from legitimate clients are denied
- This is a classic denial of service (DoS) attack
 - Common pattern: it costs nothing to TCP initiator to send a connection request, but TCP responder must allocate state for each request (asymmetry!)

Preventing Denial of Service

- DoS is caused by asymmetric state allocation
 - If responder opens a state for each connection attempt, attacker can initiate thousands of connections from bogus or forged IP addresses
- Cookies ensure that the responder is stateless until initiator produced at least 2 messages
 - Responder's state (IP addresses and ports of the connection) is stored in a cookie and sent to initiator
 - After initiator responds, cookie is regenerated and compared with the cookie returned by the initiator

SYN Cookies

Anti-Spoofing Cookies: Basic Pattern

- Client sends request (message #1) to server
- Typical protocol:
 - Server sets up connection, responds with message #2
 - Client may complete session or not (potential DoS)
- Cookie version:
 - Server responds with hashed connection data instead of message #2
 - Client confirms by returning hashed data
 - If source IP address is bogus, attacker can't confirm
 - Need an extra step to send postponed message #2, except in TCP (SYN-ACK already there)

Another Defense: Random Deletion

- If SYN queue is full, delete random entry
 - Legitimate connections have a chance to complete
 - Fake addresses will be eventually deleted
- Easy to implement

"Ping of Death"

- ◆ If an old Windows machine received an ICMP packet with a payload longer than 64K, machine would crash or reboot
 - Programming error in older versions of Windows
 - Packets of this length are illegal, so programmers of Windows code did not account for them
- Recall "security theme" of this course every line of code might be the target of an adversary

Solution: patch OS, filter out ICMP packets

Intrusion Detection Systems

- Advantage: can recognize new attacks and new versions of old attacks
- Disadvantages
 - High false positive rate
 - Must be trained on known good data
 - Training is hard because network traffic is very diverse
 - Definition of "normal" constantly evolves
 - What's the difference between a **flash crowd** and a **denial** of service attack?

Intrusion Detection Problems

- Lack of training data with real attacks
 - But lots of "normal" network traffic, system call data
- Data drift
 - Statistical methods detect changes in behavior
 - Attacker can attack gradually and incrementally
- Main characteristics not well understood
 - By many measures, attack may be within bounds of "normal" range of activities
- False identifications are very costly
 - Sysadm will spend many hours examining evidence

Intrusion Detection Errors

- ◆ False negatives: attack is not detected
 - Big problem in signature-based misuse detection
- False positives: harmless behavior is classified as an attack
 - Big problem in statistical anomaly detection
- Both types of IDS suffer from both error types
- Which is a bigger problem?
 - Attacks are fairly rare events

Base-Rate Fallacy

- ◆ 1% of traffic is SYN floods; IDS accuracy is 90%
 - IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

Conditional Probability

- Suppose two events A and B occur with probability Pr(A) and Pr(B), respectively
- ◆ Let Pr(AB) be probability that <u>both</u> A and B occur
- What is the conditional probability that A occurs assuming B has occurred?

$$Pr(A \mid B) = \frac{Pr(AB)}{Pr(B)}$$

Bayes' Theorem

- Suppose mutually exclusive events $E_1, ..., E_n$ together cover the entire set of possibilities
- Then probability of <u>any</u> event A occurring is

$$Pr(A) = \sum_{1 \le i \le n} Pr(A \mid E_i) \cdot Pr(E_i)$$

– Intuition: since E_1, \dots, E_n cover entire

probability space, whenever A occurs, some event E_i must have occurred

Can rewrite this formula as

$$Pr(A \mid E_i) \cdot Pr(E_i)$$

$$Pr(E_i \mid A) =$$

Base-Rate Fallacy

- ◆ 1% of traffic is SYN floods; IDS accuracy is 90%
 - IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

```
 Pr(valid \mid alarm) = \frac{Pr(alarm \mid valid) \cdot Pr(valid)}{Pr(alarm)} 
 = \frac{Pr(alarm \mid valid) \cdot Pr(valid)}{Pr(alarm \mid valid) \cdot Pr(valid)} 
 = \frac{O.10 \cdot 0.99}{O.10 \cdot 0.99 + 0.90 \cdot 0.01} = \frac{92\% \text{ chance raised alarm is false!!!}}{9.10 \cdot 0.99 + 0.90 \cdot 0.01}
```