CSE 484 / CSE M 584 (Spring 2012)

Protocol Rollback and Network Security

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Protocol Rollback Attacks (in SSL)

Network security

What is SSL / TLS?

Transport Layer Security (TLS) protocol, version 1.2

- De facto standard for Internet security
- "The primary goal of the TLS protocol is to provide privacy and data integrity between two communicating applications"
- In practice, used to protect information transmitted between browsers and Web servers (and mail readers and ...)
- https://datatracker.ietf.org/wg/tls/

 Based on Secure Sockets Layers (SSL) protocol, version 3.0

• Same protocol design, different algorithms

Ubiquitously deployed in commercial Web browsers

TLS Basics

TLS consists of two protocols

• Familiar pattern for key exchange protocols

Handshake protocol

 Use public-key cryptography to establish a shared secret key between the client and the server

Record protocol

- Use the secret key established in the handshake protocol to protect communication between the client and the server
- We will focus on the handshake protocol

TLS Handshake Protocol

- Two parties: client and server
- Negotiate version of the protocol and the set of cryptographic algorithms to be used
 - Interoperability between different implementations of the protocol
- Authenticate client and server (optional)
 - Use digital certificates to learn each other's public keys and verify each other's identity
- Use public keys to establish a shared secret

Handshake Protocol Structure

ClientHello

ServerHello

ServerKeyExchange

ClientKeyExchange

Version Rollback Attack

SSL 2.0 Weaknesses (Fixed in 3.0)

- Cipher suite preferences are not authenticated
 - "Cipher suite rollback" attack is possible
- SSL 2.0 uses padding when computing MAC in block cipher modes, but padding length field is not authenticated
 - Attacker can delete bytes from the end of messages
- MAC hash uses only 40 bits in export mode
- No support for certificate chains or non-RSA algorithms, no handshake while session is open

Protocol Rollback Attacks

Why do people release new versions of security protocols? Because the old version got broken!

- New version must be backward-compatible
 - Not everybody upgrades right away
- Attacker can fool someone into using the old, broken version and exploit known vulnerability
 - Similar: fool victim into using weak crypto algorithms
- Defense is hard: must authenticate version in early designs
- Many protocols had "version rollback" attacks
 - SSL, SSH, GSM (cell phones)

Version Check in SSL 3.0 (Approximate)

SSL/TLS Record Protection

Internet Infrastructure

TCP/IP for packet routing and connections
Border Gateway Protocol (BGP) for route discovery
Domain Name System (DNS) for IP address discovery

• Service (can get to Internet)

- Privacy (middle-entities shouldn't know what communicating or with whom)
- Fairness (e.g., get service I paid for)

User

- Integrity (can't impersonate me, modify my data)
- Safety (network shouldn't attack me)

• Service (clients can get to Internet)

• Performance (network works well)

Network Admin

- Identity (know what's on network)
- Safety (no one launching attacks)
- Accountability (can find bad users)

- Service (deliver traffic -> earn \$\$)
- Reliability & Performance (network works well)

Intermediate

ISPs

 Integrity of delivered traffic (can bill customers properly, you're not overcharged by providers)

Server

- Service (deliver traffic -> earn \$\$)
- Reliability & Performance (network works well)
- Analytics (better delivery)
- Accounting (can bill customers properly)
- Safety (not being attacked)

OSI Protocol Stack

email, Web, NFS application presentation RPC session TCP, UDP, ICMP transport IP network Ethernet data link physical

Data Formats

IP (Internet Protocol)

Connectionless

- Unreliable, "best-effort" protocol
- Uses numeric addresses for routing
 - Typically several hops in the route

TCP (Transmission Control Protocol)

Sender: break data into packets

• Sequence number is attached to every packet

Receiver: reassemble packets in correct order

• Acknowledge receipt; lost packets are re-sent

Connection state maintained on both sides

UDP (User Datagram Protocol)

Sender: break data into packets

- Sequence number maybe? If Application wants them
- Receiver: receive packets
 - No acknowledgement
 - Dropped packets are skipped no retransmission

ICMP (Control Message Protocol)

Provides feedback about network operation

- "Out-of-band" messages carried in IP packets
- Error reporting, congestion control, reachability, etc.
- Example messages:
 - Destination unreachable
 - Time exceeded
 - Parameter problem
 - Redirect to better gateway
 - Reachability test (echo / echo reply)
 - Message transit delay (timestamp request / reply)

Detecting attacks

• **Problem:** IP packets contain source IP address

User

Launch undetectable attacks

• Solution: Spoof IP address

