
Tadayoshi Kohno

CSE 484 / CSE M 584 (Spring 2012)

Asymmetric Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Asymmetric Cryptography

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

Public announcement or public directory
• Risks: forgery and tampering

Public-key certificate
• Signed statement specifying the key and identity

– sigCA(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves his

identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Hierarchical Approach

Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures
Root authority signs certificates for lower-level

authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“AnotherCA”, PKAnotherCA), sigAnotherCA(“Alice”, PKA)

• What happens if root authority is ever compromised?

Many Challenges

Many Challenges
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/

Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid
Trust can be transitive

• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)
sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s private key has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit
card numbers

• Can issue a “delta CRL” containing only updates

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

Mobile Device Security (Android)

Android
• Based on Linux
• Layers:

– Android Application Runtime (generally written in Java, run in
the Dalvik virtual machine; sometimes native applications or
native libraries)

– Android OS
– Device Hardware

• Applications
– Pre-installed
– User-installed

• Via app stores
• Via over the air (OTA) updates.

Android Software Stack

http://source.android.com/tech/security/index.html

Application Sandboxes

Based on Linux: Has clear notion of users and
permissions

Each application
• Assigns unique user ID (UID)
• Runs as that user in a separate process
• Different than traditional operating systems

where multiple applications run with the same user
permissions

Application Sandboxes (II)

Desktop browser sandbox: language specific
Android sandbox: baked into the OS, via the kernel

• No restriction on how applications are written
• Native code
• Java code

Conventional systems: memory corruption errors
lead to complete compromise

Android: memory corruption errors only lead to
arbitrary code execution in the context of the
particular compromised application

 (Can still escape sandbox -- but must compromise
Linux kernel to do so)

File permissions

Files written by one application cannot be read by
other applications
• Not true for files stored on the SD card

 It is possible to do full filesystem encryption
• Key = Password combined with salt, hashed with SHA1

using PBKDF2.

Memory Management

Address Space Layout Randomization to
randomize addresses on stack

Hardware-based No eXecute (NX) to prevent code
execution on stack/heap

Stack guard derivative
Some defenses against double free bugs (based

on OpenBSD’s dmalloc() function)
 ...
(See http://source.android.com/tech/security/

index.html)

Applications

Activity: Code for single, user-focused task
Services: Code that runs in the background
Broadcast Receiver: Receive Intents (messages

from other applications)

AndroidManifest.xml
• Overall information about application (activities,

services, ...)
• Also specifies which permissions are required by

applications

Permissions / Manifests

http://source.android.com/tech/security/index.html

Permissions

Example permissions
• Camera
• Location (GPS)
• Bluetooth
• SMS functions
• Network capabilities

Cannot grant / deny individual permissions
One accepted, users not notified of permissions

again
Security exception thrown if attempt to access

resource not declared in manifest

Obtaining User Consent for
Permissions

 General options:
• At install time (manifests)
• At time of use (prompts)

 Why manifests
• Users are evaluating the application, the developers, etc, to see if

they want the app
• Prompts slow down user; hinder user experience
• Users may just say “OK” to all dialogs without reading them

 Why prompts
• At time of resource access
• Opportunity for user to be more in control of actual resource use

(app with GPS permissions should only actually access the GPS
when the user wishes -- but can’t tell with manifest model)

 (Alternative: User-driven access control, Roesner et al (2012))

Application Signing

Apps are signed
• Often with self-signed certificates

Signed application certificate defines which user
ID is associated with which applications
• Different apps run under different UIDs

Shared UID feature
• Shared Application Sandbox possible, where two or

more apps signed with same developer key can declare
a shared UID in their manifest

Shared UIDs

App 1: Requests GPS / camera access
App 2: Requests Network capabilities

Generally:
• First app can’t exfiltrate information
• Second app can’t exfiltrate anything interesting

With Shared UIDs (signed with same private key)
• Permissions are a superset of permissions for each app
• App 1 can now exfiltrate; App 2 can now access GPS /

camera

Privilege Redeligation

Permission redeligation:
• App 1 does not have access to resource X
• App 2 does have access to resource X
• App 1 gains access to resource X via App 2
• (App 1 and App 2 not signed by the same party)

Video example:
• https://plus.google.com/photos/

110581955720098741626/albums/
5638277509860549393/5638277512553016018

Regarding the previous video

From the slides for “Permission Re-delegation:
Attacks and Defenses” by Adrienne Porter Felt,
Helen J Wang, Alexander Moshchuk, Steve Hanna,
Erika Chin:

