CSE 484 / CSE M 584 (Spring 2012)

Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Issue #5: Awkward, Annoying, or Difficult

Difficult

- Remembering 50 different, "random" passwords
- Awkward
 - Lock computer screen every time leave the room
- Annoying
 - Browser warnings, virus alerts, forgotten passwords, firewalls

Consequence:

Changing user's knowledge may <u>not</u> affect their behavior

Issue #6: Social Issues

Public opinion, self-image

Only "nerds" or the "super paranoid" follow security guidelines

Unfriendly

• Locking computers suggests distrust of co-workers

Annoying

• Sending encrypted emails that say, "what would you like for lunch?"

Issue #7: Usability Promotes Trust

Well known by con artists, medicine men

Phishing

• More likely to trust professional-looking websites than non-professional-looking ones

Issues with Usability

- 1. Lack of intuition
 - See a safe, understand threats. Not true for computers
- 2. Who's in charge?
 - Doctors keep your medical records safe, you manage your passwords
- 3. Hard to gage risks
 - "It would never happen to me!"
- 4. No accountability
 - Asset-holder is not the only one you can lose assets
- 5. Awkward, annoying, or difficult
- 6. Social issues
- 7. Usability promotes trust

Goals for Today

The second se

Asymmetric Cryptography

(Reminder:) Symmetric Cryptography

1 secret key, shared between sender/receiver

 Repeat fast and simple operations lots of times (rounds) to mix up key and ciphertext

Why do we think it is secure? (simplistic)

- Lots of heuristic arguments
 - If we do lots and lots and lots of mixing, no simple formula (and reversible) describing the whole process (cryptographic weakness).
 - Mix in ways we think it's hard to short-circuit all the rounds. Especially non-linear mixing, e.g., Sboxes.
- Some math gives us confidence in these assumptions

Public Key Cryptography

Basic Problem

<u>Given</u>: Everybody knows Bob's public key Only Bob knows the corresponding private key

<u>Goals</u>: 1. Alice wants to send a secret message to Bob 2. Bob wants to authenticate himself

Public-Key Cryptography

Everyone has 1 private key and 1 public key

- One for each security goal
- Or 2 private and 2 public, when considering both encryption and authentication
- Mathematical relationship between private and public keys
- Why do we think it is secure? (simplistic)
 - Relies entirely on problems we believe are "hard"

Applications of Public-Key Crypto

Encryption for confidentiality

- <u>Anyone</u> can encrypt a message
 - With symmetric crypto, must know secret key to encrypt
- Only someone who knows private key can decrypt
- Key management is simpler (or at least different)
 - Secret is stored only at one site: good for open environments
- Digital signatures for authentication
 - Can "sign" a message with your private key
- Session key establishment
 - Exchange messages to create a secret session key
 - Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets

- Public info: p and g
 - p is a large prime number, g is a generator of $Z_{\rm p}{}^{\ast}$
 - $-Z_p^*=\{1, 2 \dots p-1\}; \forall a \in Z_p^* \exists i \text{ such that } a=g^i \mod p$
 - <u>Modular arithmetic</u>: numbers "wrap around" after they reach p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:

given g^x mod p, it's hard to extract x

- There is no known efficient algorithm for doing this
- This is not enough for Diffie-Hellman to be secure!
- Computational Diffie-Hellman (CDH) problem:

given g^x and g^y, it's hard to compute g^{xy} mod p
... unless you know x or y, in which case it's easy

Decisional Diffie-Hellman (DDH) problem:

given g^x and g^y, it's hard to tell the difference between g^{xy} mod p and g^r mod p where r is random

Properties of Diffie-Hellman

- Assuming DDH problem is hard, Diffie-Hellman protocol is a secure key establishment protocol against <u>passive</u> attackers
 - Eavesdropper can't tell the difference between established key and a random value
 - Can use new key for symmetric cryptography
 - Approx. 1000 times faster than modular exponentiation
- Diffie-Hellman protocol (by itself) does not provide authentication

Properties of Diffie-Hellman

- DDH: not true for integers mod p, but true for other groups
- DL problem in p can be broken down into DL problems for subgroups, if factorization of p-1 is known.
- Common recommendation:
 - Choose p = 2q+1 where q is also a large prime.
 - Pick a g that generates a subgroup of order q in Z_p^*
 - DDH is hard for this group
 - (OK to not know all the details of why for this course.)
 - Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

- Alice and Bob never met and share no secrets
- Public info: p and g
 - p, q are large prime numbers, p=2q+1, g a generator for the subgroup of order q

- Modular arithmetic: numbers "wrap around" after they reach p

Requirements for Public-Key Encryption

- Key generation: computationally easy to generate a
 - pair (public key PK, private key SK)
 - Computationally infeasible to determine private key SK given only public key PK
- Encryption: given plaintext M and public key PK, easy to compute ciphertext C=E_{PK}(M)
- Decryption: given ciphertext C=E_{PK}(M) and private key SK, easy to compute plaintext M
 - Infeasible to compute M from C without SK
 - Even infeasible to learn partial information about M
 - <u>Trapdoor</u> function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

- ◆ Euler totient function φ(n) where n≥1 is the number of integers in the [1,n] interval that are relatively prime to n
 - Two numbers are relatively prime if their greatest common divisor (gcd) is 1
- Euler's theorem:
 - if $a \in \mathbb{Z}_n^*$, then $a^{\varphi(n)} = 1 \mod n$

 Z_n^* : multiplicative group of integers mod n (integers relatively prime to n)

Special case: <u>Fermat's Little Theorem</u> if p is prime and gcd(a,p)=1, then a^{p-1}=1 mod p

RSA Cryptosystem

• Key generation:

- Generate large primes p, q
 - Say, 1024 bits each (need primality testing, too)
- Compute n=pq and φ(n)=(p-1)(q-1)
- Choose small e, relatively prime to φ(n)

- Typically, e=3 or $e=2^{16}+1=65537$ (why?)

- Compute unique d such that $ed = 1 \mod \varphi(n)$
- Public key = (e,n); private key = (d,n)
- Encryption of m: $c = m^e \mod n$
 - Modular exponentiation by repeated squaring
- Decryption of c: $c^d \mod n = (m^e)^d \mod n = m$

Why RSA Decryption Works

• $e \cdot d = 1 \mod \varphi(n)$, thus $e \cdot d = 1 + k \cdot \varphi(n)$ for some k Can rewrite: $e \cdot d = 1 + k(p-1)(q-1)$

Let m be any integer in Z_n

- If gcd(m,p)=1, then m^{ed}=m mod p
 - By Fermat's Little Theorem, m^{p-1}=1 mod p
 - Raise both sides to the power k(q-1) and multiply by m
 - $m^{1+k(p-1)(q-1)}=m \mod p$, thus $m^{ed}=m \mod p$
 - By the same argument, m^{ed}=m mod q
- Since p and q are distinct primes and p·q=n, m^{ed}=m mod n (using the Chinese Remainder Theorem)
 True for all m in Z_n, not just m in Z_n*