
Tadayoshi Kohno

CSE 484 / CSE M 584 (Spring 2012)

Asymmetric Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Issue #5: Awkward, Annoying, or
Difficult

Difficult
• Remembering 50 different, “random” passwords

Awkward
• Lock computer screen every time leave the room

Annoying
• Browser warnings, virus alerts, forgotten passwords,

firewalls

Consequence:
• Changing user’s knowledge may not affect their

behavior

Issue #6: Social Issues

Public opinion, self-image
• Only “nerds” or the “super paranoid” follow security

guidelines
Unfriendly

• Locking computers suggests distrust of co-workers
Annoying

• Sending encrypted emails that say, “what would you
like for lunch?”

Issue #7: Usability Promotes
Trust
Well known by con artists, medicine men

Phishing
• More likely to trust professional-looking websites than

non-professional-looking ones

Issues with Usability

1. Lack of intuition
• See a safe, understand threats. Not true for computers

2. Who’s in charge?
• Doctors keep your medical records safe, you manage your

passwords

3. Hard to gage risks
• “It would never happen to me!”

4. No accountability
• Asset-holder is not the only one you can lose assets

5. Awkward, annoying, or difficult
6. Social issues
7. Usability promotes trust

Goals for Today

 Asymmetric Cryptography

(Reminder:) Symmetric Cryptography

 1 secret key, shared between sender/receiver
 Repeat fast and simple operations lots of times

(rounds) to mix up key and ciphertext
Why do we think it is secure? (simplistic)

• Lots of heuristic arguments
– If we do lots and lots and lots of mixing, no

simple formula (and reversible) describing the
whole process (cryptographic weakness).

– Mix in ways we think it’s hard to short-circuit all
the rounds. Especially non-linear mixing, e.g., S-
boxes.

• Some math gives us confidence in these assumptions

Public Key Cryptography

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Public-Key Cryptography

 Everyone has 1 private key and 1 public key
• One for each security goal
• Or 2 private and 2 public, when considering

both encryption and authentication
Mathematical relationship between private and

public keys
Why do we think it is secure? (simplistic)

• Relies entirely on problems we believe are
“hard”

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman
Assuming DDH problem is hard, Diffie-Hellman

protocol is a secure key establishment protocol against
passive attackers
• Eavesdropper can’t tell the difference between established

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

Properties of Diffie-Hellman
DDH: not true for integers mod p, but true for other

groups
 DL problem in p can be broken down into DL problems for

subgroups, if factorization of p-1 is known.
 Common recommendation:
• Choose p = 2q+1 where q is also a large prime.
• Pick a g that generates a subgroup of order q in Zp*
–DDH is hard for this group
– (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for
the subgroup of order q
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy mod p) Compute k=H((gx)y)=H(gxy mod p)

Requirements for Public-Key Encryption

Key generation: computationally easy to generate a
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK
Encryption: given plaintext M and public key PK,

easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number
of integers in the [1,n] interval that are relatively
prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1
Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

 Zn*: multiplicative group of integers mod n (integers
relatively prime to n)

Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n); private key = (d,n)

Encryption of m: c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c: cd mod n = (me)d mod n = m

Why RSA Decryption Works
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n,
 med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*

