
Tadayoshi Kohno

CSE 484 / CSE M 584 (Spring 2012)

Web Security + User
Authentication

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Web Security
 User Authentication

 Lab 2 out today, due next Friday

Web Security...

• ...

• Lower parts of the stack need securing, e.g., DNS

• Higher parts of the stack need securing, e.g., SQL

• ...

User Data in SQL Queries

set UserFound=execute(
 “SELECT * FROM UserTable WHERE ”
 “username=′ ” & form(“user”) & “ ′ AND ”
 “password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail
(Notation approximate)

Only true if the result of SQL
query is not empty, i.e., user/pwd
is in the database

SQL Injection

User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

This returns the entire database!
UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

It Gets Better (or Worse?)

User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
Creates an account for badguy on DB server

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’)
 user_level=‘103’, user_aim=(‘???????’)
WHERE user_id=‘userid’

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

http://xkcd.com/327/

Also: don’t forget
about the user side!

Dangerous Websites
 2006 “Web patrol” study at Microsoft identified 752

unique URLs that could successfully exploit unpatched
Windows XP machines
• Many are interlinked by redirection and controlled by the same

major players

 “But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get into

search engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75 “innocuous”

sites focusing on (1) celebrities, (2) song lyrics, (3) wallpapers, (4)
video game cheats, and (5) wrestling

 Similar study at UW
Malware also distributed through emails and ads

Q: How should we store passwords on a server?

Q2: What threats are you worried about?

Server Authentication

How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user

system password file
“cypherpunk”

hash
function

Password Hashing

 Instead of user password, store H(password)
When user enters password, compute its hash and

compare with entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

– Which would be possible if the passwords were encrypted

Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error
– The attacker doesn’t need to find the password, just a

password that hashes to the stored value

• “Slow” to compute

(Early) UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times? Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Can instruct modern UNIXes to use cryptographic hash

function

(Early) UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times? Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Modern systems use a cryptographic hash function

Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32

punctuation symbols, there are 948 ≈ 6 quadrillion
possible 8-character passwords (around 252)

• Humans like to use dictionary words, human and pet
names ≈ 1 million common passwords

Dictionary Attack
Password file /etc/passwd is world-readable

• Contains user IDs and group IDs which are used by many
system programs

Dictionary attack is possible because many
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10 guesses

per second, brute-force online attack takes 50,000
seconds (14 hours) on average
– This is very conservative. Offline attack is much faster!

• As described (H(word)), could just create dictionary of
“word to H(word)” mapping once -- for all users!!

Salt

alice:fURxfg,4hLBX:14510:30:Alice:/u/alice:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries in the
password file

• Online dictionary attack is still possible! (Precomputed
dictionaries possible too -- but significantly more expensive.)

Basically, encrypt NULL plaintext

Advantages of Salting

Without salt, attacker can pre-compute hashes of
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table

of hash values can be used for all password files
With salt, attacker must compute hashes of all

dictionary words once for each password entry
• With 12-bit random salt, same password can hash to 212

different hash values
• Attacker must try all dictionary words for each salt value

in the password file
Pepper: Secret salt (not stored in password file)

Other Password Issues
Keystroke loggers

• Hardware
• Software / Spyware

Shoulder surfing
Online vs offline attacks

• Online: slower, easier to respond
Multi-site authentication

• Share passwords?

Recovery Passwords

 http://www.wired.com/threatlevel/2008/09/palin-e-mail-ha/

Password Reuse

 http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-
use-empirically/

“Improving” Passwords

Add biometrics
• For example, keystroke dynamics or voiceprint
• Revocation is often a problem with biometrics

Graphical passwords
• Goal: increase the size of memorable password space

Password managers
Two-factor authentication

• Leverages user’s phone (or other device) for
authentication

Two-Factor Authentication

