
Tadayoshi Kohno

CSE 484 / CSE M 584 (Spring 2012)

Web Security + User
Authentication

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

Web Security
 User Authentication

 Lab 2 out today, due next Friday

Web Security...

• ...

• Lower parts of the stack need securing, e.g., DNS

• Higher parts of the stack need securing, e.g., SQL

• ...

User Data in SQL Queries

set UserFound=execute(
 “SELECT * FROM UserTable WHERE ”
 “username=′ ” & form(“user”) & “ ′ AND ”
 “password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail
(Notation approximate)

Only true if the result of SQL
query is not empty, i.e., user/pwd
is in the database

SQL Injection

User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

This returns the entire database!
UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

It Gets Better (or Worse?)

User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
Creates an account for badguy on DB server

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’)
 user_level=‘103’, user_aim=(‘???????’)
WHERE user_id=‘userid’

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

http://xkcd.com/327/

Also: don’t forget
about the user side!

Dangerous Websites
 2006 “Web patrol” study at Microsoft identified 752

unique URLs that could successfully exploit unpatched
Windows XP machines
• Many are interlinked by redirection and controlled by the same

major players

 “But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get into

search engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75 “innocuous”

sites focusing on (1) celebrities, (2) song lyrics, (3) wallpapers, (4)
video game cheats, and (5) wrestling

 Similar study at UW
Malware also distributed through emails and ads

Q: How should we store passwords on a server?

Q2: What threats are you worried about?

Server Authentication

How should we store passwords on a server?
• In cleartext?
• Encrypted?
• Hashed?

UNIX-Style Passwords

 t4h97t4m43
 fa6326b1c2
 N53uhjr438
 Hgg658n53
 …

user

system password file
“cypherpunk”

hash
function

Password Hashing

 Instead of user password, store H(password)
When user enters password, compute its hash and

compare with entry in password file
• System does not store actual passwords!
• System itself can’t easily go from hash to password

– Which would be possible if the passwords were encrypted

Hash function H must have some properties
• One-way: given H(password), hard to find password

– No known algorithm better than trial and error
– The attacker doesn’t need to find the password, just a

password that hashes to the stored value

• “Slow” to compute

(Early) UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times? Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Can instruct modern UNIXes to use cryptographic hash

function

(Early) UNIX Password System
Uses DES encryption as if it were a hash function

• Encrypt NULL string using password as the key
– Truncates passwords to 8 characters!

• Artificial slowdown: run DES 25 times
– Why 25 times? Slowdowns like these are important in practice!

• (“Don’t use DES like this at home.”)
• Modern systems use a cryptographic hash function

Problem: passwords are not truly random
• With 52 upper- and lower-case letters, 10 digits and 32

punctuation symbols, there are 948 ≈ 6 quadrillion
possible 8-character passwords (around 252)

• Humans like to use dictionary words, human and pet
names ≈ 1 million common passwords

Dictionary Attack
Password file /etc/passwd is world-readable

• Contains user IDs and group IDs which are used by many
system programs

Dictionary attack is possible because many
passwords come from a small dictionary
• Attacker can compute H(word) for every word in the

dictionary and see if the result is in the password file
• With 1,000,000-word dictionary and assuming 10 guesses

per second, brute-force online attack takes 50,000
seconds (14 hours) on average
– This is very conservative. Offline attack is much faster!

• As described (H(word)), could just create dictionary of
“word to H(word)” mapping once -- for all users!!

Salt

alice:fURxfg,4hLBX:14510:30:Alice:/u/alice:/bin/csh

/etc/passwd entry
salt
(chosen randomly when
password is first set)

hash(salt,pwd)Password

• Users with the same password have different entries in the
password file

• Online dictionary attack is still possible! (Precomputed
dictionaries possible too -- but significantly more expensive.)

Basically, encrypt NULL plaintext

Advantages of Salting

Without salt, attacker can pre-compute hashes of
all dictionary words once for all password entries
• Same hash function on all UNIX machines
• Identical passwords hash to identical values; one table

of hash values can be used for all password files
With salt, attacker must compute hashes of all

dictionary words once for each password entry
• With 12-bit random salt, same password can hash to 212

different hash values
• Attacker must try all dictionary words for each salt value

in the password file
Pepper: Secret salt (not stored in password file)

Other Password Issues
Keystroke loggers

• Hardware
• Software / Spyware

Shoulder surfing
Online vs offline attacks

• Online: slower, easier to respond
Multi-site authentication

• Share passwords?

Recovery Passwords

 http://www.wired.com/threatlevel/2008/09/palin-e-mail-ha/

Password Reuse

 http://www.lightbluetouchpaper.org/2011/02/09/measuring-password-re-
use-empirically/

“Improving” Passwords

Add biometrics
• For example, keystroke dynamics or voiceprint
• Revocation is often a problem with biometrics

Graphical passwords
• Goal: increase the size of memorable password space

Password managers
Two-factor authentication

• Leverages user’s phone (or other device) for
authentication

Two-Factor Authentication

