
Tadayoshi Kohno

CSE 484 / CSE M 584 (Spring 2012)

Symmetric Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

 Cryptography

 Also: Lab part 1 due on Friday
• Don’t all increase in complexity
• Read recommended readings

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0
0

Disadvantages
Disadvantage #3: Keys cannot be reused

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

• Generate a random bitmap

• Encode 0 as:

• Encode 1 as:

Visual Cryptography

• Take a black and white bitmap image

• For a white pixel, send the same as the mask

• For a black pixel, send the opposite of the mask

Visual Cryptography

or

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

• http://www.cl.cam.ac.uk/~fms27/vck/face.gif

Visual Cryptography

See also http://www.cs.washington.edu/homes/yoshi/cs4hs/cse-vc.html

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

Background: Permutation

0
1
2

3

0
1
2

3
For N-bit input, 2N! possible permutations
 Idea for how to use a keyed permutation: split

plaintext into blocks; for each block use secret key
to pick a permutation
• Without the key, permutation should “look random”

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Each key defines a different permutation
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

Block Cipher Security

Result should look like a random permutation on the
inputs
• Recall: not just shuffling bits. N-bit block cipher

permutes over 2N inputs.

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

DES
Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from
a random permutation if internal F function is a
pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999: EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics

Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext

is larger than 128-bit block size

What should we do?

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit ciphertext

Electronic Code Book (ECB) Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

K K K K K

