
Tadayoshi Kohno

CSE 484 / CSE M 584 (Spring 2012)

Intro to Cryptography

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...



Goals for Today

 Cryptography

 Also:  Lab part 1 due on Friday
• Don’t all increase in complexity
• Read recommended readings



Alice
Bob

M
Encapsulate Decapsulate

M

Adversary

K K

K K

Symmetric Setting
Both communicating parties have access to a shared 

random string K, called the key.



Adversary

pkB

pkA
Alice

Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Asymmetric Setting
Each party creates a public key pk and a secret key sk.  



Alice
Bob

M C
Encrypt

K

Decrypt

K

M

Encryption schemes:  A tool for protecting privacy.

K K

Adversary

. . . . . . . . . .Message M
. . . . . . .Ciphertext C

Achieving Privacy (Symmetric)



Achieving Privacy (Asymmetric)

Alice
Bob

M C
Encrypt

pkB

Decrypt

skB

M

Encryption schemes:  A tool for protecting privacy.

Adversary

. . . . . . . . . .Message M
. . . . . . .Ciphertext C

pkA,skA pkB,skB

pkB

pkA



Achieving Integrity (Symmetric)

M

Alice
Bob

valid/
invalidT

MAC

K

(M,T)
Verify

K

Message authentication schemes:  A tool for 
protecting integrity.

(Also called message authentication codes or MACs.)

K K

Adversary

. . . . . . . . . .Message M
. . . . . . . . . . . . . . . . Tag T



Achieving Integrity (Asymmetric)

M

Alice
Bob

valid/
invalidT

Sign
(M,T)

Verify

Digital signature schemes:  A tool for protecting 
integrity and authenticity.

Adversary

. . . . . . . . . .Message M
. . . . . . . . . . . . . . . . Tag T

pkA,skA pkB,skB

pkB

pkA

skA pkA



Alice

PRNG

“Random” Numbers
Pseudorandom Number Generators (PRNGs)

R1, R2, R3, R4, R5, ...

Machine State
User Input

... Adversary



Alice

PBKDF

Getting keys:  PBKDF
Password-based Key Derivation Functions

Password K

(Key check value)



Adversary

pkB, sign(skCA,B,pkB)

Alice
Bob

M
Encapsulate Decapsulate

M

pkB,skA pkA,skB

pkA,skA pkB,skB

Getting keys:  CAs
Each party creates a public key pk and a secret key sk.  

(Public keys signed by a trusted third party:  a certificate 
authority.)

pkA, sign(skCA, A, pkA)



Getting keys:  Key exchange
Key exchange protocols:  A tool for establishing a 

shared symmetric key from public keys

Adversary

pkB

pkA
Alice

Bob

K.E.
K

K.E.
K

pkB,skA pkA,skB

pkA,skA pkB,skB



One-way Communications

Message encrypted under Bob’s public key

PGP is a good example



Interactive Communications

Let’s talk securely; here are the algorithms I 
understand

I choose these algorithms; start key exchange

Continue key exchange

In many cases, it’s probably a good idea to just use 
a standard protocol/system like SSH, SSL/TLS, etc...

Communicate using exchanged key



Let’s Dive a Bit Deeper 



One-way Communications

6. Send D, C, T

(Informal example; ignoring, e.g., signatures)
1. Alice gets Bob’s public key; Alice verifies Bob’s public key (e.g., via CA)

2. Alice generates random symmetric keys K1 and K2

3. Alice encrypts the message M the key K1; call result C 
4. Alice authenticates (MACs) C with key K2; call the result T

5. Alice encrypts K1 and K2 with Bob’s public key; call the result D

(Assume Bob’s private key is encrypted on Bob’s disk.)

7. Bob takes his password to derive key K3

8. Bob decrypts his private key with key K3

9. Bob uses private key to decrypt K1 and K2

10. Bob uses K2 to verify MAC tag T

11. Bob uses K1 to decrypt C



Interactive Communications
1. Alice and Bob exchange public keys and certificates

3. Alice and Bob take their passwords and derive symmetric keys
4. Alice and Bob use those symmetric keys to decrypt 
and recover their asymmetric private keys.
5. Alice and Bob use their asymmetric private keys and a 
key exchange algorithm to derive a shared symmetric key

(They key exchange process will require Alice and 
Bob to generate new pseudorandom numbers)

6.  Alice and Bob use shared symmetric key to encrypt 
and authenticate messages

2. Alice and Bob use CA’s public keys to verify certificates and each 
other’s public keys

(Informal example; details omitted)

(Last step will probably also use random numbers; will need 
to rekey regularly; may need to avoid replay attacks,...)



What cryptosystems 
have you heard of?
(Past or present)



History

Substitution Ciphers 
• Caesar Cipher

Transposition Ciphers
Codebooks
Machines

Recommended Reading:  The Codebreakers by 
David Kahn and The Code Book by Simon Singh. 
• Military uses
• Rumrunners
• ....



Classic Encryption

• Goal:  To communicate a secret message

• Start with an algorithm

• Caesar cipher (substitution cipher):

	
 	
 ABCDEFGHIJKLMNOPQRSTUVWXYZ

  GHIJKLMNOPQRSTUVWXYZABCDEF



Then add a secret key

• Both parties know that the secret word is 
“victory”:

 ABCDEFGHIJKLMNOPQRSTUVWXYZ

 VICTORYABDEFGHJKLMNPQSUWXZ

• “state of  the art” for thousands of years



Kerckhoff’s Principle

 Security of a cryptographic object should depend 
only on the secrecy of the secret (private) key

 Security should not depend on the secrecy of the 
algorithm itself.



Checkpoint
• Symmetric cryptography
• Both sides know shared key, no one else knows 

anything. Can encrypt, decrypt, sign/MAC, 
verify
• Computationally lightweight
• Challenge: How do you privately share a key?

• Asymmetric cryptography
• Everyone has a public key that everyone else knows; 

and a paired secret key that is private
• Public key can encrypt; only secret key can decrypt
• Secret key can sign/MAC, public key can verify
• Computationally expensive
• Challenge: How do you validate a public key?



Checkpoint

•Where are public keys from?
• One solution: keys for Certificate 

Authorities a priori known by browser, OS, 
etc.

•Where are shared keys from?
• In person exchange, snail mail, etc.
• If we have verifiable public/private keys:

key exchange protocol generates a shared 
key for symmetric cryptography



How cryptosystems work today
 Layered approach:

• Cryptographic primitives, like block ciphers, stream ciphers, 
hash functions, and one-way trapdoor permutations

• Cryptographic protocols, like CBC mode encryption, CTR mode 
encryption, HMAC message authentication

 Public algorithms (Kerckhoff’s Principle)
 Security proofs based on assumptions (not this course)

block cipher hash functions

CBC encryption CTR encryption HMAC auth.

OCB auth. encryption CBC-MAC auth.



“Old Days” Cryptanalysis and 
Probabilities

From http://en.wikipedia.org/wiki/Letter_frequencies



Attack Scenarios for Encryption

Ciphertext-Only
Known Plaintext
Chosen Plaintext
Chosen Ciphertext (and Chosen Plaintext)

(General advice:  Target strongest level of privacy 
possible -- even if not clear why -- for extra 
“safety”)



Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value

key

key



Attack Scenarios for Integrity

What do you think these scenarios should be?



One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 



Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, 

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?



Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #1:  Keys as long as messages.
Impractical in most scenarios 
Still used by intelligence communities



Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #2:  No integrity protection

0
0


