CSE 484 /| CSE M 584 (Spring 2012)

Software Security: Buffer
Overflow Attacks and Beyond

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, Dan Halperin, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Administrivia

R R] N b B e W R R .] — T B W »
ot ot CRNE e AN NSNS R b BN 5 AN e NS SRS e B

¢ Coffee/teas -- meet in CSE atrium
¢ Lab 1 out

(BNE 5 NN e NG R D" SNE 54 NN NG R b SNE 3 TSN A

¢ Software security
e Continue

¥ e - Tl W ' N - -
S i o W ’x.' %

PS3 and Randomness

L T T et T R T, T T
—a - £ al - —a - 2ot u SN e DERNE G AN SN e s 2

¢ Example Current Event report from a past
iteration of 484

e https://catalyst.uw.edu/gopost/conversation/kohno/
452868

Quote

PS3 Exploit
Today, January 3rd, George “Geohot” Hotz found and released the private root key for Sony's

.« Playstation 3 (PS3) video game console (http://www.geohot.com/). What this means is that homebrew
software enthusiasts, scientists, and software pirates can now load arbitrary software on the PS3 and
sign it using this key, and the system will execute it as trusted code. Legitimately, this allows Linux and
other operating systems to take advantage of the PS3's cell processor architecture; however, it also
opens up avenues of software piracy previously impossible on Sony's system without requiring any
hardware modifications to the system (previous access of this kind required a USB hardware dongle)

How it Was Done

This was enabled by a cryptographic error by Sony developers in their update process. In the DSA
signature algorithm, a number k is chosen from a supposedly random source for each signed message.
So long as the numbers are unique, the system is secure, but duplicating a random number between
messages can expose the private key to an untrusted party using simple mathematics
(http://rdist.root.org/2010/11/19/dsa-requirements-for-random-k-value/). Sony used the exact same
“random value” k for all updates pushed to the system, making the signature scheme worthless.

The Most Secure

After Sony removed the “other OS" functionality of the PS3, greater scrutiny was placed on the PS3.
Since it's release in 2006, the Playstation 3 was considered the most secure of the three major video
game consoles, as it was the only console without a “root” compromise in the four years since release
(there were vulnerabilities limited to specific firmware or that required specialized hardware, but nothing
that provided unfettered access). By comparison, Microsoft's Xbox 360 was cracked over 4 years ago
(http://www.theregister.co.uk/2007/03/01/xbox_hack), and the Wii was cracked over 2 years ago
(http://wiibrew.org/wiki/Index.php).

Cullen Walsh
Mark Jordan
Peter Lipay

Other Problems

O.Key genekatlon

e Ubuntu removed the randomness from SSL, creating
vulnerable keys for thousands of users/servers

o Undetected for 2 years (2006-2008)

® Live CDs, diskless clients
e May boot up in same state every time

¢ Virtual Machines

e Save state: Opportunity for attacker to inspect the
pseudorandom number generator’s state

e Restart: May use same “psuedorandom” value more
than once

/I'u. JUST COMENT
OUT THESE LINES...

&

J/MD _update(&m, buf, j):

P

e

IN THE RUSH TO CLEAN
VP THE DEBIAN -OPENSSL
FIRSCO, A NUMBER OF OTHER
MAJOR SECURITY HOLES
HAVE BEEN UNCOVERED:

// do_not_crash ();

%2

//prevent _211();

ng

AFFECTED
SYSTEM SECURITY PROBLEM
VULNERABLE. TO CERTAIN
FEDORA CORE nrropER. RINGS
XANDROS GIVES ROOT ACCESS IF
(eee Pc) ASKED IN STERN VOICE
GENTOO VULNERABLE T0 FLATTERY
VULNERABLE TO JEFF
OLPC 05 | GOLDBLUM'S POWERBOOK
GIVES ROOT ACCESS IF USER
SLACKWARE SAYS ELVISH WORD FOR “FRIEND'
TURNS OUT DISTRO 15
UBUNTU ACTUALLY JUST WINDOWS VISTA

WITH A FEW CUSTOM THEMES

Source: XKCD

DILBERT By Scort Apawms

TOUR OF ACCOUNTING

OVER HERE

WE HAVE OUR
RANDOM NUMBER
GENERATOR.

www. dlibert.com ecottademe @ solcom

NINE NINE
NINE NINE
NINE NINE

'GfA!lo. € 200! United Feature Syndicate. Ine

e

THAT'S THE
PROBLEM

WITH RAN-
DOMNESS:
YOU CAN

NEVER BE
SURE.

Obtalnlng Pseudorandom Numbers

‘: c£ c£ ' ‘: c£

0 For securlty appllcatlons want cryptographlcally
secure pseudorandom numbers”

@ Libraries include cryptographically secure
nseudorandom number generators
@ Linux:

e /dev/random

e /dev/urandom - nonblocking, possibly less entropy
¢ Internally:

e Entropy pool gathered from multiple sources

Where do (good) random
numbers come from!

® Humans: keyboard, mouse input

® Timing: interrupt firing, arrival of packets
on the network interface

® Physical processes: unpredictable physical
phenomena

Physical RNGs in CPUs

e State of uninitialized memory

when machine

DOWEI'S Oon

= T :Hl 1_: ﬁ:a‘ﬁ H B ':E entropy
f::?-::: . :::;:fﬂ_“ SR"S% H:Hh:i::: 1.0

::n_!!_f: i o 3
R eaE __ - h 0.8
i e : ,

o SEaammaas
=" Se e e 0.6
R mESE - EmmmmEEE-mEmmemE- S ! !
| === = . i
- == =R
:::H_i L::“?:Hggl'_'i_} 1'__ —-;Eh:i-. E 10.2
e

A : LT 0.0

(Holcomb, Burleson, Fu,
|IEEE Trans. Comp 58(9),
Sept. 2009)

e Tiny variations in voltage over resistor

Buffer overflow attacks

void foo (char *argv[])

{

push %ebp
mov %esp, sebp

char buf[128];

sub S0x88, %esp
mov 0x8 (%ebp), %eax
strcpy(buf, argv[1]);

add S0x4, %eax

mov (%eax), 3eax

mov 3eax,0x4 (%esp)
lea -0x80 (%ebp), %eax
mov zeax, (sesp)

call 804838c <strcpy@plt>

}

leave
ret

Stack
Caller’s
stack
frame
ret/IP
Saved FP| '

How to defend against this!?

void foo (char *argv[]) o llaay| Stack

{ . stack

push %ebp

mov %esp, sebp frame

char buf[128]; ret/IP

sub S0x88, %esp

mov 0x8(%ebp), %$eax Saved FP \ 4

strcpy(buf, argv[1]);

add S0x4, %eax

mov (%eax), 3eax

mov 3eax,0x4 (%esp)
lea -0x80 (%ebp), %eax
mov zeax, (%sesp)

call 804838c <strcpy@plt>

}

leave
ret

Stack Canary (StackGuard)

Caller’s

void foo (char *argv[])

{

int canary = <random>;
char buf[128];

strcpy(buf, argv[1]);
assert(canary unchanged);

}

Any Canary Adyvice?
* Null byte stops strcpy() bugs
* CR-LF stops gets() bugs
* EOF stops fread() bugs

stack

et Stack

ret/IP

Saved FP

Canary \ /

StackGuard Implementation

¢ StackGuard requires code recompilation

¢ Checking canary integrity prior to every function
return causes a performance penalty
e For example, 8% for Apache Web server

® PointGuard also places canaries next to function
pointers and setjmp buffers

e Worse performance penalty

¢ StackGuard doesn’t completely solve the problem
(can be defeated)

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - sfp | RET

a_l
Suppose program contains strcpy(dst,buf) Return execution to

0% DZOZOZ ZOZOZOZ(
NZING

DA RO

BadPointer, éttack code [RET

/ \
Overwrite destination of strcpy with RET position / strcpy will copy

BadPointer here

Non- Executable Stack

0 NX b|t for pages in memory
e Modern Intel and AMD processors support
e Modern OS support as well
¢ Some applications need executable stack
e For example, LISP interpreters
¢ Does not defend against return-to-libc exploits

e Overwrite return address with the address of an existing
library function (can still be harmful)

e Generalization: Return-oriented programming
¢ ...nor against heap and function pointer overflows

¢ ...nor changing stack internal variables (auth
flag, ...)

P TN e e LW R Y T R Wl e - o - -

I | tG d
NS 30 S S GR RTINS G SR SR NN &~

o - . A L A RS &
)&.’L Cal .S o ol 7.4 DC RN S o SUANE A NS S ""..)&.’L DA e NS b ERNE

¢ Attack: overflow a function pointer so that it points
to attack code

® Idea: encrypt all pointers while in memory

e Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
— Pointers cannot be overflown while in registers

¢ Attacker cannot predict the target program’s key

e Even if pointer is overwritten, after XORing with key it will
dereference to a “random” memory address

Normal Pointer Dereference [cowan]

[- M = .-.-" r - el - M = .-.-" r - el - M = .-.-" r - el - M = .-.-" r - el - M = .-.-" - el o n
; & e RN ol T. DERNE G AN ol T. DERNE G AN ol T. DERNE G AN ol T. DERNE G AN ol T. o W

1. Fetch pointer value 2. Access data referenced by pointer
- 7 Y
Memory Ox1234 pats
0x1234

CPU

2. Access attack code referenced
by corrupted pointer

1. Fetch pointer value

Corruptgd pointer Attack

Memory oz Data code

0x1234 0x1340

PointGuard Dereference [Cowan]

(BNE G N NS R b NS 0 AN S NG R b SNE s H AN NG R b NS A AN NG R b SNE s AN NG R b NS

CPU

1. Fetch pointer Ox1234 2. Access data referenced by pointer

value Decrypt
e

7 <
Encrypted pointer

Memory x7239 pata

0x1234

Decrypts to
random value

2. Access random address;
0x9786 segmentation fault and crash

1. Fetch pointer
value Decrypt
e
Corruptgd pointer Attack T
—0x7239 | Data
Memory 0x1340 code

0x1234 0x1340 0x9786

PointGuard Issues

A, ot A, ot A, Rt NS

® Must be very fast
e Pointer dereferences are very common
¢ Compiler issues

e Must encrypt and decrypt only pointers

o If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

¢ Attacker should not be able to modify the key
e Store key in its own non-writable memory page

® PG'd code doesn’t mix well with normal code
e What if PG'd code needs to pass a pointer to OS kernel?

Other solutions to some of these issues

- - i el (Sl - i el (Sl - i el (Sl - i B g AN S N i

¢ Use safe programming languages, e.g., Java
e What about legacy C code?
e (Note that Java is not the complete solution)

@ Static analysis of source code to find overflows

€ Randomize stack location or encrypt return address
on stack by XORing with random string

e Attacker won't know what address to use in his or her
string

Timing Attacks

¢ Assume there are no “typical” bugs in the
software

e No buffer overflow bugs

e No format string vulnerabilities
e Good choice of randomness

e Good design

® The software may still be vulnerable to timing
attacks

o Software exhibits input-dependent timings
¢ Complex and hard to fully protect against

AN LT T R R VL TR Wl b e il W R R VL TR Wl b e il W 2 &
NS e D RNE G NN NS S D RNE G NN NS S s 2

Password Checker

S W T - - e Bor i W W - - 2 e Bor i W W »
ot u [y ot u [y ot u a . o ..)&.’L DA e NS b o ..)&.’L DA e NS b ERNE

® Functional requirements

e PwdCheck(RealPwd, CandidatePwd) should:
— Return TRUE if RealPwd matches CandidatePwd
— Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

¢ Implementation (like TENEX system)

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to 8do
if (RealPwd[i] != CandidatePwd][i]) then
return FALSE
return TRUE

@ Clearly meets functional description

Attacker Model

Pl AN L T T R R T T R o o Tl

W e e W LT
e e e P D RNE G NN NS S D RNE G NN NS S s 2

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to8do
sleep for I second
if (RealPwd[i] != CandidatePwd][i]) then
return FALSE
return TRUE

¢ Attacker can guess CandidatePwds through some
standard interface

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

Attacker Model

s L aRE N R T I RS e N T T e s &
't n ol T. DERNE G AN ol T. DERNE G AN ol T. i Py

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to 8do
sleep for I second
if (RealPwd[i] != CandidatePwd][i]) then
return FALSE
return TRUE

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities
® Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then third,

e Total tries: 256*8 = 2048

Other Examples

- pa— . - T Y T - T Y ~m
NS 4 AN > el | Sl S 0 NN o NS I b ANE I NN o NESGS Iw e SNE 5 NN e NG Wi NS

¢ Plenty of other examples of timings attacks

e AES cache misses
— AES is the “"Advanced Encryption Standard”
— It is used in SSH, SSL, IPsec, PGP, ...

e RSA exponentiation time
— RSA is a famous public-key encryption and signature scheme
— It's also used in many cryptographic protocols and products

Fuzz Testing

. A - " T - e B Y - L . " T - e B Y - L . " T - e B Y
ol il P e el PI A Nl (PR N 2 el T N PR N Sl -

® Generate “random” inputs to program

e Sometimes conforming to input structures (file
formats, etc)

#® See if program crashes
o If crashes, found a bug
e Bug may be exploitable

@ Surprisingly effective

¢ Now standard part of development lifecycle

G t. D . .ty
BNE G N NS R b SNE 0 AN e A R b SNE I RSN S

- N B - WL TS -~ T - WL T e -~ T
Y L —a [y ol | ot u [y a . ""..)t.)z DA e NS b ""..)t.)z DA e NS b >N

® Problems with Monoculture

¢ Steps toward diversity
o Automatic diversification of compiled code

e Address Space Randomization

¢ Example in Tor:
o users get lists of relays from “directory authorities”

e require signatures from 4/7 authorities to accept

e variety of OS’es, crypto libs, etc.
o Works: only 3 servers compromised by Debian SSL bug

Principles

¢ Open design? Open source?
¢ Maybe...

¢ Linux Kernel Backdoor Attempt: http://
www.freedom-to-tinker.com/?p=472

¢ PGP Corporation: http://www.symantec.com/

connect/downloads/symantec-pgp-desktop-peer-
review-source-code

