CSE 484 (Winter 2011)

Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

¢ Asymmetric Cryptography

¢ HW2 returned at end of class (please remember
to wait to pick up)

Digital Signatures: Basic Idea

public key

private key

public key {% : . .
- = - \/
—g I—=

Alice

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

RSA Slgnatures

OPubllc key IS (n e), prlvate key IS d

¢ To sign message m: s = m“ mod n

e Signing and decryption are the same underlying operation
in RSA

e It's infeasible to compute s on m if you don’t know d

¢ To verify signature s on message m:
scmodn=(md)emodn=m
e Just like encryption

e Anyone who knows n and e (public key) can verify
signhatures produced with d (private key)

¢ In practice, also need padding & hashing
e Standard padding/hashing schemes exist for RSA signatures

Encryption and Signatures

¢ Often people think: Encryption and decryption are
Inverses.

® That's a common view
e True for the RSA primitive (underlying component)

¢ But not one we’ll take

e To really use RSA, we need padding
e And there are many other decryption methods

Digital Signature Standard (DSS)

¢ U.S. government standard (1991-94)
e Modification of the ElGamal signature scheme (1985)

¢ Key generation:

e Generate large primes p, g such that g divides p-1
_ 2159 < q < 2160, 2511+64t < p < 2512+64t Where OStS8

e Select heZ,* and compute g=h{P1¥a mod p
e Select random x such 1<x=@g-1, compute y=g* mod p

® Public key: (p, g, g, y=g* mod p), private key: x

® Security of DSS requires hardness of discrete log

e If could solve discrete logarithm problem, would extract
X (private key) from g mod p (public key)

DSS: Signing a Message (Skim)

Compute r = (g€ mod p) mod g

Private key

Random secret X q > (F,S) is the
petween 0 and 6 signature on M

Message g H fl S _

Hash function

(SHA-1) Compute s = k'*-(H(M)+x-r) mod g

DSS: Verifying a Signature (Skim)

Message %

.

Signature g <

Compute w = s mod g

Public ke

A 14 I,
(\| Compute (gHMw . yrwmod 4 mod
Y q§8g p) mod g

p Compare

If they match, signature is valid

Why DSS Verification Works (Skim)

¢ If (r,s) is a legitimate signature, then

r = (gk modp) modq ; S = k'1°(H(M)+X°I‘) mod g
¢ Thus H(M) = -x-r+k-s mod q

e Multiply both sides by w=s" mod q
®H(M)W + X-rW = K mod q

e Exponentiate g to both sides
¢ (gH(M)-w + XrW — gk) mod p mod q

e In a valid signature, g8 modpmodq = I, gX modp = Y
¢ Verify ghMW.y™ = r nod p mod q

Security of DSS

® Can't create a valid signature without private key

#® Given a signature, hard to recover private key

¢ Can't change or tamper with signed message

¢ If the same message is signed twice, signatures are

different
e Each signature is based in part on random secret k

® Secret k must be different for each signature!

o If k is leaked or if two messages re-use the same k,
attacker can recover secret key x and forge any signature
from then on

e Example problem scenario: rebooted VMs; restarted
embedded machines, Sony PS3!

Advantages of Public-Key Crypto

¢ Confidentiality without shared secrets
e Very useful in open environments

e No “chicken-and-egg” key establishment problem

— With symmetric crypto, two parties must share a secret before
they can exchange secret messages

— Caveats to come

¢ Authentication without shared secrets
e Use digital signatures to prove the origin of messages
¢ Reduce protection of information to protection of
authenticity of public keys

e No need to keep public keys secret, but must be sure that
Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
e Modular exponentiation is an expensive computation

e Typical usage: use public-key cryptography to establish a
shared secret, then switch to symmetric crypto

— E.qg., IPsec, SSL, SSH, ...
® Keys are longer
e 1024+ bits (RSA) rather than 128 bits (AES)

@ Relies on unproven number-theoretic assumptions

e What if factoring is easy?
— Factoring is believed to be neither P, nor NP-complete

e (Of course, symmetric crypto also rests on unproven
assumptions)

Exponentiation

¢ How to compute MX mod N?
¢ Say, x = 13
¢ Sums of power of 2, x = 8+4+1 = 23+2%+20
¢ Can also write x in binary, e.g., x = 1101
¢ Can solve by repeated squaring
cy=1
y=y>*MmodN //y=M
y=y2*MmodN//y=M"™M =Ml = M3
y=y?modN//y=(M’)?*=M°
y = y2>|< M mod N //y — (M6)2*M — M12+1 — M13 = MX

T|m|ng attacks

Collect tlmmgs for exponentlatlon Wlth a bunch of messages Ml

M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know bs=1, bo=1, guess bi=1

i bi=0 bi=1 Comp [Meas

3 |ly=y?modN|y =vy2* M1 mod N

2 |ly=y?mod N |y = y2* M1 mod N

1 Jly=vy?mod N |y =y2* M1 mod NI|X1 secs

0 |y=y?modN|y =y2*M1modN Y1 secs
i bi=0 bi = Comp |Meas

3 |ly=y2modN|y =y2* M2 mod N

2 |Jly=y?mod N|y = y2* M2 mod N

1 ly=v2mod N |y = y2* M2 mod NI|X2 secs

0 |ly=y?modN|y =y2*M2modN Y2 secs

T|m|ng attacks

0 If b1 = 1 then set of { Y] Xj | jin{1,2, ..} } has
dIStI‘IbUtIOn with “small” variance (due to time for final
step, i=0)

e “Guess” was correct when we computed X1, X2, ...
®Ifb;=0,thensetof { Yj-Xj|jin{1,2, ..} } has
distribution with “large” variance (due to time for final
step, i=0, and incorrect guess for b1)
e "“Guess” was incorrect when we computed X1, X2, ...

e So time computation wrong (Xj computed as large, but really
small, ...)

¢ Strategy: Force user to sign large number of messages
M1, M2, Record timings for signing.

¢ Iteratively learn bits of key by using above property.

Authenticity of Public Keys

private key

public key

Problem: How does Alice know that the public key
she received is really Bob’s public key?

Distribution of Public Keys

¢ Public announcement or public directory
e Risks: forgery and tampering
® Public-key certificate
e Signed statement specifying the key and identity
— sigca("Bob”; PKp)
¢ Common approach: certificate authority (CA)
e Single agency responsible for certifying public keys

o After generating a private/public key pair, user proves his
identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

e Every computer is pre-configured with CA’s public key

Hierarchical Approach

@ Single CA certifying every public key is impractical
® Instead, use a trusted
e For example, Verisign

e Everybody must know the public key for verifying root
authority’s signatures

® Root authority signs certificates for lower-level
authorities, lower-level authorities sign certificates
for individual networks, and so on

e Instead of a single certificate, use a
o SigVerisign(“AnOtherCA"l PKAnotherCA)I SigAnotherCA(“'A‘lice"l PKA)

e What happens if root authority is ever compromised?

Challenges

PN

e

Posted by timothy on Mon May 27, '02 09:48 PM
from the there-is-a-problem-with-this-certificate dept.

Embedded Geek writes:

"Scientific American has an interesting article about how a pair of students

at the Technion-Israel Institute of Technology registered "microsoft.com”

with Verisign, using the Russian Cyrillic letters "¢" and "o". Even though it

is a completely different domain, the two display identically (the article uses the
term "homograph"). The work was done for a paper in the Communications of the
ACM (the paper itself is not online). The article characterizes attacks using this
spoof as "scary, if not entirely probable," assuming that a hacker would have to first
take over a page at another site. | disagree: sending out a mail message with the
URL waiting to be clicked ("Bill Gates will send you ten dollars!") is just one

alternate technique. While security problems with Unicode have been noted here
before, this might be a new twist."

/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/

e T & et I eSS o o, B T AT B i W T BT S et g T RS T o, a -
(BNS 5+ Bl S A R b D NS G A NSNS R b BN G NN S NS S " AN G

=

Posted by CmdrTaco on Tue Dec 30, 2008 12:14 PM
from the they-even-faked-this-dept dept.

13rmin4di0r writes

"Just when you were breathing easy about Kaminsky, DNS

and the word hijacking, by repeating the word SSL in your

head, the hackers at CCC were busy at work making a

hash of SSL certificate security. Here's the scoop on how

they set up their own rogue CA, by (from what | can figure)

reversing the hash and engineering a collision up in MD5 space.
Until now, MD5 collisions have been ignored because nobody would
put in that much effort to create a useful dummy file, but a CA
certificate for phishing seems juicy enough to be fodder for the
botnets now."

http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/

Alternative: “"Web of Trust”

® Used in PGP (Pretty Good Privacy)
¢ Instead of a single root certificate authority, each
person has a set of keys they “trust”

o If public-key certificate is signed by one of the “trusted”
keys, the public key contained in it will be deemed valid

® Trust can be transitive

e Can use certified keys for further certification

Sigaice(" Friend”, Friend’s key)
Sirriend(" FOQF”, FoaF's key)

Vans | S

Friend of Alice

Friend of friend

Signature
algorithm~,
identifier -

Period of |
validity

Subject's
public key-
info -

Signature ."}

Version

Certilicate
Serial Number

algorithm

parameters

Issuer Name

{
-

not before
not alter

Subject Name

Issuer Unique
Identilier

Subject Unique
Identilier

Extensions

X.509 Certificate

Version |

Yersion 2

Version 3

I

Versions

1

Added in X.509 versions 2 and 3 to address
usability and security problems

Certificate Revocation

® Revocation is very important

¢ Many valid reasons to revoke a certificate

e Private key corresponding to the certified public key has
been compromised

e User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

o CA's private key has been compromised!

¢ Expiration is a form of revocation, too

e Many deployed systems don’t bother with revocation

e Re-issuance of certificates is a big revenue source for
certificate authorities

Certificate Revocation Mechanisms

® Online revocation service

e When a certificate is presented, recipient goes to a special
online service to verify whether it is still valid

— Like a merchant dialing up the credit card processor

@ Certificate revocation list (CRL)

e CA periodically issues a signed list of revoked certificates

— Credit card companies used to issue thick books of canceled credit
card numbers

e Can issue a “delta CRL" containing only updates

X.509 Certificate Revocation List

Signature
algorithm {

: & arameters
identilier P

Issuer Name

This Update Date

Next Update Date Because certificate serial numbers
must be unique within each CA, this is
Revoked { user certificate serial # enough to identify the certificate

certilicate

Revoked
certificate revocation date
2 algorithms
Signature parameters

ArE _,.:Eggﬁfaf.i" _____

