
 Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2011)

Goals for Today

 Asymmetric Cryptography

Photos?

 Privacy
 Trust
 Usability
 ...

Image from http://www.interactivetools.com/staff/dave/damons_office/

http://www.interactivetools.com/staff/dave/damons_office/
http://www.interactivetools.com/staff/dave/damons_office/

Public Key Cryptography

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (or at least different)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

Properties of Diffie-Hellman
Assuming DDH problem is hard, Diffie-Hellman

protocol is a secure key establishment protocol against
passive attackers
• Eavesdropper can’t tell the difference between established

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

Properties of Diffie-Hellman
DDH: not true for integers mod p, but true for other

groups
 DL problem in p can be broken down into DL problems for

subgroups, if factorization of p-1 is known.
 Common recommendation:
• Choose p = 2q+1 where q is also a large prime.
• Pick a g that generates a subgroup of order q in Zp*
–DDH is hard for this group
– (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for
the subgroup of order q
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy) mod p Compute k=H((gx)y)=H(gxy) mod p

Requirements for Public-Key Encryption

Key generation: computationally easy to generate a
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK
Encryption: given plaintext M and public key PK,

easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number
of integers in the [1,n] interval that are relatively
prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1
Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

 Zn*: multiplicative group of integers mod n (integers
relatively prime to n)

Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n); private key = (d,n)

Encryption of m: c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c: cd mod n = (me)d mod n = m

Why RSA Decryption Works
 e⋅d=1 mod ϕ(n)
Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n,
 med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*

Why Is RSA Secure?

RSA problem: given n=pq, e such that
 gcd(e,(p-1)(q-1))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by
taking eth root of c

• There is no known efficient algorithm for doing this
Factoring problem: given positive integer n, find

primes p1, …, pk such that n=p1
e1p2

e2…pk
ek

 If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n

Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!

Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

On RSA encryption

Encrypted message needs to be in interpreted as
an integer less than n
• Reason: Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.

