

Web Security 2
Roy McElmurry

Lab 2 Explained

Legitimate Cross-Site
Communication

● Let's say that company A wants to include a
series of pages from company B in their
website

● Company B does not want to provide their
proprietary code to company A

● Now we have two domains that legitimately
need to communicate

Illegitimate Cross-Site
Communication

● I, Hacker McHackington load website A in an
iframe that fills the screen

● Javascript on the page analyzes website A to
learn sensitive information about the user

Same Origin Policy for DOM

def canAccess(w1, w2):
if (w1.protocol, w1.host, w1.port) ==

(w2.protocol, w2.host, w2.port):
return True

elif (w1.protocol, w1.port) == (w2.protocol, w2.port) and
w1.document.domain == w2.document.domain and
isSubDomain(w1.document.domain, w1.host) and
isSubDomain(w2.document.domain, w2.host):

return True
else:

return False

When can one website's code access the html elements
of another site? When is this even an issue?

Changing Document.domain

● If two sites mutually set their domain to be
proper subdomains that match, then they can
pass the same origin policy

● When would this occur?
● Problems:

● Once one domain does this it can be communicated
with by any subdomain that also sets its
document.domain

Unspecified Behavior

● What should happen in these situations
● When the urls are ip addresses?
● When the protocol is file://?

– Can the file access anything on the harddrive?
– Can it access anything on the web?

Same Origin Policy for AJAX
● We no longer allow document.domain to be

taken into account
● This means that sites cannot collaborate even if

they want to
● There are usually additional restrictions on the

kinds of requests that can be made, you can
send but not receive

● There are restrictions on the kinds of status
codes that will be exposed to you and what
headers you can send out
● Why?

Header Restrictions

Cookies

● Provides persistent state that spans sessions
● Path option: can assign cookies on a smaller

scope to specific paths
● Domain option: can assign cookies on wider

scopes to broader domains
● Secure option: the cookie will be sent with

requests only if it is over a secure connection
● Http-only option: the cookie cannot be

inspected by javascript

Same Origin Policy for Cookies

● Code may only read or write cookies for the
current domain

● Secure and Http-only limit the readability of
cookies, but do not prevent overwriting

● Third party cookies will be sent with remote
requests

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

