CSE 484 / CSE M 584 (Autumn 2011)

Security and Networks

Daniel Halperin Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Class updates

- Homework 3 due today
- My office hours this week:
 - **CSE 210:** W,Th,F in the after-class slot
 - Other times by appointment.
 - Come pick up graded Homework #2

Lab 3

• Posted on website and on Catalyst.

- <u>https://catalyst.uw.edu/collectit/assignment/</u> <u>dhalperi/17513/72548</u>
- Hack my privacy!
- This lab is optional
 - Can only help your grade.
 - Lots of opportunity for extra credit.
 - I really think this lab is fun, and encourage you to do it, but we're not going to require it.

This week

- **Today:** Finish networks, Final, & Course Evals
- Friday: Any questions you have
 - Submit to my email, cse484-tas
 - Submit anonymously via the feedback form on the website

Grading?

Final?

SYN Flooding Attack

SYN Flooding Explained

 Attacker sends many connection requests with spoofed source addresses

Victim allocates resources for each request

- Connection state maintained until timeout
- Fixed bound on half-open connections
- Once resources exhausted, requests from legitimate clients are denied

This is a classic denial of service (DoS) attack

 Common pattern: it costs nothing to TCP initiator to send a connection request, but TCP responder must allocate state for each request (asymmetry!)

Preventing Denial of Service

DoS is caused by asymmetric state allocation

- If responder opens a state for each connection attempt, attacker can initiate thousands of connections from bogus or forged IP addresses
- Cookies ensure that the responder is stateless until initiator produced at least 2 messages
 - Responder's state (IP addresses and ports of the connection) is stored in a cookie and sent to initiator
 - After initiator responds, cookie is regenerated and compared with the cookie returned by the initiator

SYN Cookies

More info: http://cr.yp.to/syncookies.html

Anti-Spoofing Cookies: Basic Pattern

Client sends request (message #1) to server

Typical protocol:

- Server sets up connection, responds with message #2
- Client may complete session or not (potential DoS)

Cookie version:

- Server responds with hashed connection data instead of message #2
- Client confirms by returning hashed data
 - If source IP address is bogus, attacker can't confirm
- Need an extra step to send postponed message #2, <u>except</u> in TCP (SYN-ACK already there)

Another Defense: Random Deletion

If SYN queue is full, delete random entry

- Legitimate connections have a chance to complete
- Fake addresses will be eventually deleted
- Easy to implement

"Ping of Death"

If an old Windows machine received an ICMP packet

- with a payload longer than 64K, machine would crash or reboot
 - Programming error in older versions of Windows
 - Packets of this length are illegal, so programmers of Windows code did not account for them
- Recall "security theme" of this course every line of code might be the target of an adversary

Solution: patch OS, filter out ICMP packets

Intrusion Detection Systems

- Advantage: can recognize new attacks and new versions of old attacks
- Disadvantages
 - High false positive rate
 - Must be trained on known good data
 - Training is hard because network traffic is very diverse
 - Definition of "normal" constantly evolves
 - What's the difference between a **flash crowd** and a **denial** of service attack?

Intrusion Detection Problems

- Lack of training data with real attacks
 - But lots of "normal" network traffic, system call data
- Data drift
 - Statistical methods detect changes in behavior
 - Attacker can attack gradually and incrementally
- Main characteristics not well understood
 - By many measures, attack may be within bounds of "normal" range of activities
- False identifications are very costly
 - Sysadm will spend many hours examining evidence

Intrusion Detection Errors

- False negatives: attack is not detected
 - Big problem in signature-based misuse detection
- False positives: harmless behavior is classified as an attack
 - Big problem in statistical anomaly detection
- Both types of IDS suffer from both error types
- Which is a bigger problem?
 - Attacks are fairly rare events

♦ 1% of traffic is SYN floods; IDS accuracy is 90%

- IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

Conditional Probability

- Suppose two events A and B occur with probability Pr(A) and Pr(B), respectively
- Let Pr(AB) be probability that <u>both</u> A and B occur
- What is the conditional probability that A occurs assuming B has occurred?

Conditional Probability

- Suppose two events A and B occur with probability Pr(A) and Pr(B), respectively
- Let Pr(AB) be probability that <u>both</u> A and B occur
- What is the conditional probability that A occurs assuming B has occurred?

 $Pr(A | B) = \frac{Pr(AB)}{Pr(B)}$

Bayes' Theorem

 ◆ Suppose mutually exclusive events E₁, ..., E_n together cover the entire set of possibilities
◆ Then probability of <u>any</u> event A occurring is Pr(A) = ∑_{1 < i < n} Pr(A | E_i) • Pr(E_i)

– Intuition: since E_1, \dots, E_n cover entire

probability space, whenever A occurs, some event E_i must have occurred

Can rewrite this formula as

 $Pr(E_i | A) = \frac{Pr(A | E_i) \cdot Pr(E_i)}{Pr(A)}$

♦ 1% of traffic is SYN floods; IDS accuracy is 90%

- IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

♦ 1% of traffic is SYN floods; IDS accuracy is 90%

- IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

Pr(alarm | valid) • Pr(valid)

Pr(valid | alarm) =

Pr(alarm)

$\diamond 1\%$ of traffic is SYN floods; IDS accuracy is 90%

- IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

Pr(alarm | valid) • Pr(valid)

Pr(valid | alarm) =

Pr(alarm)

Pr(alarm | valid) • Pr(valid)

Pr(alarm | valid) • Pr(valid) + Pr(alarm | SYN flood) • Pr(SYN flood)

$\diamond 1\%$ of traffic is SYN floods; IDS accuracy is 90%

- IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

Pr(alarm | valid) • Pr(valid)

Pr(valid | alarm) =

Pr(alarm)

Pr(alarm | valid) • Pr(valid)

=

Pr(alarm | valid) • Pr(valid) + Pr(alarm | SYN flood) • Pr(SYN flood) 0.10 • 0.99

 $0.10 \cdot 0.99 + 0.90 \cdot 0.01$

$\diamond 1\%$ of traffic is SYN floods; IDS accuracy is 90%

- IDS classifies a SYN flood as attack with prob. 90%, classifies a valid connection as attack with prob. 10%
- What is the probability that a connection flagged by IDS as a SYN flood is actually valid traffic?

Pr(alarm | valid) • Pr(valid)

Pr(valid | alarm) =

Pr(alarm)

Pr(alarm | valid) • Pr(valid)

Pr(alarm | valid) • Pr(valid) + Pr(alarm | SYN flood) • Pr(SYN flood) 0.10 • 0.99

 $0.10 \cdot 0.99 + 0.90 \cdot 0.01$

= 92% chance raised alarm is false!!!