
Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Security and Networks

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Class updates

• (Short) Homework 3

• Due Wednesday

• Individual assignment

• My office hours this week:

• CSE 210: M,W,F after class. T, Th afternoons

• others by appointment

• come pick up graded Homework #2

Lab 3
•Posted on website and on Catalyst.

• https://catalyst.uw.edu/collectit/assignment/
dhalperi/17513/72548

• Hack my privacy!

https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548
https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548
https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548
https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548

Lab 3
•Posted on website and on Catalyst.

• https://catalyst.uw.edu/collectit/assignment/
dhalperi/17513/72548

• Hack my privacy!

•This lab is optional

• Can only help your grade.

• Lots of opportunity for extra credit.

• I really think this lab is fun, and encourage you
to do it, but we’re not going to require it.

https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548
https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548
https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548
https://catalyst.uw.edu/collectit/assignment/dhalperi/17513/72548

This week

• Today: Network security

• Wednesday: Potpourri

• Friday: Any questions you have

• Submit to my email, cse484-tas

• Submit anonymously via the feedback form on
the website

Internet Infrastructure

local network

Internet service
provider (ISP)

backbone

ISP

local network

 TCP/IP for packet routing and connections
 Border Gateway Protocol (BGP) for route discovery
 Domain Name System (DNS) for IP address discovery

Network
Admin

(Some) Entities

User Server
Intermediate

ISPs

(Some) Goals

User

(Some) Goals

User

• Service (can get to Internet)

• Privacy (middle-entities shouldn’t know
what communicating or with whom)

• Fairness (e.g., get service I paid for)

• Integrity (can’t impersonate me)

• Safety (network shouldn’t attack me)

(Some) Goals

Network
Admin

(Some) Goals

• Service (clients can get to Internet)

• Performance (network works well)

• Identity (know what’s on network)

• Safety (no one launching attacks)

• Accountability (can find bad users)

Network
Admin

(Some) Goals

Intermediate
ISPs

(Some) Goals

• Service (deliver traffic -> earn $$)

• Reliability & Performance (network
works well)

• Integrity of delivered traffic (can bill
customers properly, you’re not over-
charged by providers)

Intermediate
ISPs

(Some) Goals

Server

(Some) Goals

• Service (deliver traffic -> earn $$)

• Reliability & Performance (network
works well)

• Analytics (better delivery)

• Accounting (can bill customers
properly)

• Safety (not being attacked)

Server

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Launch
undetectable

attacks

Probe for
vulnerabilities

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Launch
undetectable

attacks

Probe for
vulnerabilities

Spy on/tamper with traffic

Impersonate servers

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Launch
undetectable

attacks

Probe for
vulnerabilities

Spy on/tamper with traffic

Impersonate servers

Spy on
users

Identify
anonymous

users

OSI Protocol Stack

application

presentation

session

transport

network

data link

physical

IP

TCP, UDP, ICMP

email, Web, NFS

RPC

Ethernet

Data Formats

Application data

dataTCP
header dataTCP

header dataTCP
header

dataTCP
header

IP
header

dataTCP
header

IP
header

Ethernet
header

Ethernet
trailer

application
layer

transport
layer

network
layer

data link
layer

message

segment

packet

frame

IP (Internet Protocol)

Connectionless
• Unreliable, “best-effort” protocol

Uses numeric addresses for routing
• Typically several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet
Source 128.83.130.239

171.64.66.201Dest
128.83.130.239

171.64.66.201

TCP (Transmission Control Protocol)

Sender: break data into packets
• Sequence number is attached to every packet

Receiver: reassemble packets in correct order
• Acknowledge receipt; lost packets are re-sent

Connection state maintained on both sides

book
remember received pages

and reassemblemail each
page

UDP (User Datagram Protocol)

Sender: break data into packets
• Sequence number - maybe? If Application wants them

Receiver: receive packets
• No acknowledgement
• Dropped packets are skipped - no retransmission

video
stream frames to

applicationmail each
frame

ICMP (Control Message Protocol)

Provides feedback about network operation
• “Out-of-band” messages carried in IP packets
• Error reporting, congestion control, reachability, etc.

Example messages:
• Destination unreachable
• Time exceeded
• Parameter problem
• Redirect to better gateway
• Reachability test (echo / echo reply)
• Message transit delay (timestamp request / reply)

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Launch
undetectable

attacks

Probe for
vulnerabilities

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Launch
undetectable

attacks

Probe for
vulnerabilities

Spy on/tamper with traffic

Impersonate servers

Network
Admin

(Some) Malicious Goals

User Server
Intermediate

ISPs

Launch
undetectable

attacks

Probe for
vulnerabilities

Spy on/tamper with traffic

Impersonate servers

Identify
anonymous

users

Detecting attacks

Launch
undetectable

attacks

User

Detecting attacks

Launch
undetectable

attacks

• Problem: IP packets contain
source IP addressUser

Detecting attacks

Launch
undetectable

attacks

• Problem: IP packets contain
source IP addressUser

Detecting attacks

Launch
undetectable

attacks

• Problem: IP packets contain
source IP address

• Solution: Spoof IP address

User

Inferring DDOS (Moore,
Voelker, Savage ’01)

Attack

Backscatter

Attacker

Victim

B

C

D

VB C VD V

SYN packets

Figure 1: An illustration of backscatter in action. Here the
attacker sends a series of SYN packets towards the victim V,
using a series of random spoofed source addresses: named C,
B, and D. Upon receiving these packets the victim responds by
sending SYN/ACKs to each of spoofed hosts.

Again, these ICMP messages are sent to the randomly
spoofed source address.
Because the attacker’s source address is selected at

random, the victim’s responses are equi-probably dis-
tributed across the entire Internet address space, an in-
advertent effect we call “backscatter”2. This behavior is
illustrated in Figure 1.

3.1 Backscatter analysis

Assuming per-packet random source addresses, reliable
delivery and one response generated for every packet in
an attack, the probability of a given host on the Internet
receiving at least one unsolicited response from the vic-
tim is during an attack of packets. Similarly, if one
monitors distinct IP addresses, then the expectation of
observing an attack is:

By observing a large enough address range we can ef-
fectively “sample” all such denial-of-service activity on
the Internet. Contained in these samples are the identity
of the victim, information about the kind of attack, and a
timestamp from which we can estimate attack duration.
Moreover, given these assumptions, we can also use the
average arrival rate of unsolicited responses directed at
the monitored address range to estimate the actual rate

2We did not originate this term. It is borrowed from Vern Paxson
who independently discovered the same backscatter effect when an at-
tack accidentally disrupted multicast connectivity by selecting global
multicast addresses as source addresses [20].

of the attack being directed at the victim, as follows:

where is the measured average inter-arrival rate of
backscatter from the victim and is the extrapolated at-
tack rate in packets-per-second.

3.2 Address uniformity

The estimation approach outlined above depends on the
spoofed source addresses being uniformly distributed
across the entire IP address space. To check whether a
sample of observed addresses are uniform in our moni-
tored address range, we compute the Anderson-Darling
(A2) test statistic [9] to determine if the observations
are consistent with a uniform distribution. In particular,
we use the implementation of the A2 test as specified in
RFC2330 [19] at a 0.05 significance level.

3.3 Analysis limitations

There are three assumptions that underly our analysis:

Address uniformity: attackers spoof source ad-
dresses at random.

Reliable delivery: attack traffic is delivered reliably
to the victim and backscatter is delivered reliably to
the monitor.

Backscatter hypothesis: unsolicited packets ob-
served by the monitor represent backscatter.

We discuss potential biases that arise from these assump-
tions below.
Key among our assumptions is the random selection of

source address. There are three reasons why this assump-
tion may not be valid. First, some ISPs employ ingress
filtering [12, 5] on their routers to drop packets with
source IP addresses outside the range of a customer’s net-
work. Thus, an attacker’s source address range may not
include any of our monitored addresses and we will un-
derestimate the total number of attacks.
“Reflector attacks” pose a second problem for source

address uniformity. In this situation, an attacker “laun-
ders” the attack by sending a packet spoofed with the
victim’s source address to a third party. The third party
responds by sending a response back towards the victim.
If the packets to the third partie are addressed using a
broadcast address (as with the popular smurf or fraggle
attacks) then third parties may further amplify the attack.
The key issue with reflector attacks is that the source ad-
dress is specifically selected. Unless an IP address in the
range we monitor is used as a reflector, we will be unable

Finding vulnerabilities

Probe for
vulnerabilities

User

Finding vulnerabilities

Probe for
vulnerabilities

• Many, many tools

User

Finding vulnerabilities

Probe for
vulnerabilities

• Many, many tools

• One example: Nmap

• Many services have known
TCP/UDP ports

• These give away what services
you’re running

User

Nmap example (me)
dhalperi@dhm cse484 % nmap dsp.cs.washington.edu

Starting Nmap 5.51 (http://nmap.org) at 2011-12-05 14:05 PST
Nmap scan report for dsp.cs.washington.edu (128.208.4.246)
Host is up (0.0062s latency).
Not shown: 996 closed ports
PORT STATE SERVICE
22/tcp open ssh
139/tcp open netbios-ssn
443/tcp open https
445/tcp open microsoft-ds

Nmap done: 1 IP address (1 host up) scanned in 1.36 seconds

http://nmap.org
http://nmap.org

Nmap example (aqua)
dhalperi@dhm cse484 % nmap aqua.cs.washington.edu

Starting Nmap 5.51 (http://nmap.org) at 2011-12-05 14:06 PST
Nmap scan report for aqua.cs.washington.edu (128.208.4.187)
Host is up (0.0022s latency).
Not shown: 990 filtered ports
PORT STATE SERVICE
80/tcp open http
135/tcp open msrpc
139/tcp open netbios-ssn
445/tcp open microsoft-ds
1025/tcp open NFS-or-IIS
1026/tcp open LSA-or-nterm
1027/tcp open IIS
1028/tcp open unknown
1048/tcp open neod2
3389/tcp open ms-term-serv

Nmap done: 1 IP address (1 host up) scanned in 5.29 seconds

http://nmap.org
http://nmap.org

telnet example

Identify
anonymous

users

Server

Fingerprinting users

Identify
anonymous

users

Server

Fingerprinting users

• Browser

Identify
anonymous

users

Server

Fingerprinting users

• Browser

• Clocks

Identify
anonymous

users

Server

Fingerprinting users

• Browser

• Clocks

• More

Browser example
http://panopticlick.eff.org/

http://panopticlick.eff.org/
http://panopticlick.eff.org/

Clocks

Kohno, et al. 2004

Clocks

Figure 1. TSopt clock offset-sets for two
sources in BBN. Trace recorded on an OC-
48 link of a U.S. Tier 1 ISP, 2004-04-28 19:30–
21:30PDT. The source with the wide band has
a 10 Hz TSopt clock, the source with the nar-
row band has a 100 Hz TSopt clock. A source
with no clock skew would have a horizontal
band.

R is differentiable, then the first derivative of y, which is
the slope of the points in OT , is the skew s of Ctcp. Since
we cannot generally make these assumptions, we are left to
approximate s from the data.

Let us consider plots like those in Figure 1 more closely.
We first observe that the large band corresponds to a device
where the TSopt clock has low resolution (r = 100 ms) and
that the narrow band corresponds to a device with a higher
resolution (r = 10 ms). The width of these bands, and in
particular the wide band, means that if the duration of our
trace is short, we cannot always approximate the slope of
the points in OT by computing the slope between any two
points in the set. Moreover, as Paxson and others have noted
in similar contexts [22, 20], variable network delay renders
simple linear regression insufficient. Consequently, to ap-
proximate the the skew s from OT , we borrow a linear pro-
gramming solution from Moon, Skelly, and Towsley [20],
which has as its core Graham’s convex hull algorithm on
sorted data [12].

The linear programming solution outputs the equation of
a line αx + β that upper-bounds the set of points OT . We
use an upper bound because network and host delays are all
positive. The slope of the line, α, is our estimate of the clock
skew of Ctcp. In detail, the linear programming constraints
for this line are that, for all i ∈ {1, . . . , |T |},

α · xi + β ≥ yi ,

which means that the solution must upper-bound all the
points in OT . The linear programming solution then mini-

mizes the average vertical distance of all the points in OT
from the line; i.e., the linear programming solution is one
that minimizes the objective function

1
|T | ·

|T |∑

i=1

(
α · xi + β − yi

)
.

Although one can solve the above using standard linear pro-
gramming techniques, as Moon, Skelly, and Towsley [20]
note, there exist techniques to solve linear programming
problems in two variables in linear time [10, 16]. We use
a linear time algorithm in all our computations.

It remains to discuss how to infer Hz if the measurer does
not know it in advance. One solution involves computing
the slope of the points

I = { (xi, vi) : i ∈ {1, . . . , |T | }
and rounding to the nearest integer. One can compute the
slope of this set by adapting the above linear programming
problem to this set.

AN EQUIVALENT VIEW. If A is the slope of the points in
the above set I, derived using the linear programming al-
gorithm, then one could also approximate the skew of Ctcp

as A/Hz − 1. This approach is simply a different way of
arriving at the same solution since we can prove that, when
using the linear programming method for slope estimation,
both approaches produce the same skew estimate. We use
the offset-set approach since these sets naturally yield fig-
ures where the skews are clearly visible; e.g., Figure 1.

4 Exploiting ICMP Timestamp Requests

THE MEASURER. To exploit a device’s system time clock
skew, the measurer could be any website with which the fin-
gerprintee communicates, or any other device on the Inter-
net provided that the measurer is capable of issuing ICMP
Timestamp Requests (ICMP message type 13) to the fin-
gerprintee. The measurer must also be capable of record-
ing the fingerprintee’s subsequent ICMP Timestamp Reply
messages (ICMP message type 14). In order for this tech-
nique to be mountable, the primary limitation is that the de-
vice must not be behind a NAT or firewall that filters ICMP.

ESTIMATING THE SYSTEM CLOCK SKEW. Let us now as-
sume that an adversary has obtained a trace T of ICMP
Timestamp Reply messages from the fingerprintee. The
ICMP Timestamp Reply messages will contain two 32-bit
values generated by the fingerprintee. The first value is
the time at which the corresponding ICMP Timestamp Re-
quest packet was received, and the second value is the time
at which the ICMP Timestamp Reply was generated; here
time is according to the fingerprintee’s system clock, Csys,
and is reported in milliseconds since midnight UTC. Win-
dows machines report the timestamp in little endian for-

Kohno, et al. 2004

Security Issues in TCP/UDP

Network packets pass through/by untrusted hosts
• Eavesdropping (packet sniffing)
• Modifications

 IP addresses are public
• Smurf attacks
• Anonymity?

TCP connection requires state
• SYN flooding

TCP state is easy to guess
• TCP spoofing and connection hijacking

Smurf Attack

gateway victim

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate
“Are you alive?” ping

request from the victim

Every host on the
network

generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external packets to broadcast addresses

TCP Handshake

C S

Listening…

TCP Handshake

C S

SYNC Listening…

TCP Handshake

C S

SYNC Listening…

Store data
(connection state, etc.)

TCP Handshake

C S

SYNC

SYNS, ACKC

Listening…

Store data
(connection state, etc.)

TCP Handshake

C S

SYNC

SYNS, ACKC

Listening…

Store data
(connection state, etc.)

Wait

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Store data
(connection state, etc.)

Wait

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Store data
(connection state, etc.)

Wait

Connected

SYN Flooding Attack

S

SYNC1 Listening…

Spawn a new thread,
store connection data

SYNC2

SYNC3

SYNC4

SYNC5

… and more

… and more

… and more

… and more

… and more

SYN Flooding Explained

Attacker sends many connection requests with
spoofed source addresses

Victim allocates resources for each request
• Connection state maintained until timeout
• Fixed bound on half-open connections

Once resources exhausted, requests from legitimate
clients are denied

This is a classic denial of service (DoS) attack
• Common pattern: it costs nothing to TCP initiator to send

a connection request, but TCP responder must allocate
state for each request (asymmetry!)

