

Daniel Halperin
Tadayoshi Kohno

CSE 484 / CSE M 584 (Autumn 2011)

Asymmetric Cryptography

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Class updates
• Remember current events and security reviews are due

this Friday

• Office hours today (with Miro) in CSE 210

• (Short) Homework 3; due next Wednesday

• Individual assignment

• Available on Catalyst at 3:30 today

• (Short) Lab 3 out tomorrow or Friday

• Short, fun privacy “scavenger hunt”

• Groups of 1 to 3

Today

• Wrap up RSA / Public Key Cryptography

• Switch to Public Key Protocols

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

Note: Optimizing Exponentiation

 How to compute Mx mod N? Say x=13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M2+1)2 = M4+2

• y = y2 * M mod N // y = (M4+2)2 *M = M8+4+1

 Does anyone see a potential issue?

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

Public announcement or public directory
• Risks: forgery and tampering

Public-key certificate
• Signed statement specifying the key and identity

– sigCA(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves his

identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Hierarchical Approach

Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures
Root authority signs certificates for lower-level

authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“AnotherCA”, PKAnotherCA), sigAnotherCA(“Alice”, PKA)

• What happens if root authority is ever compromised?

Many Challenges

Many Challenges
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/

http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://it.slashdot.org/story/08/12/30/1655234/CCC-Create-a-Rogue-CA-Certificate
http://www.win.tue.nl/hashclash/rogue-ca/
http://www.win.tue.nl/hashclash/rogue-ca/

Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid
Trust can be transitive

• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)
sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s private key has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit
card numbers

• Can issue a “delta CRL” containing only updates

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message))

Encrypt, then sign
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control (for

next slide: assume one password for whole system)
Does this work?

X.509 Version 1 (message is passwd)

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

Encrypt, then sign
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control (for

next slide: assume one password for whole system)
Does this work?

Attack on X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

 Receiving encrypted password under signature does not
mean that the sender actually knows the password!

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password))

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

PRIVATE
KEY K

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123
PRIVATE
KEY K

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

PRIVATE
KEY K

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

PRIVATE
KEY K

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

PRIVATE
KEY K

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

sigK(x)

PRIVATE
KEY K

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

sigK(x)

PRIVATE
KEY K

sigK(x)

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

sigK(x)

PRIVATE
KEY K

sigK(x)

One key recommendation: Don’t use same public key / secret key
pair for multiple applications. (Or make sure messages have different
formats across applications.)

Secure Sessions

Secure sessions are among the most important
applications in network security
• Enable us to talk securely on an insecure network

Goal: secure bi-directional communication channel
between two parties
• The channel must provide confidentiality

– Third party cannot read messages on the channel

• The channel must provide authentication
– Each party must be sure who the other party is

• Other desirable properties: integrity, protection against
denial of service, anonymity against eavesdroppers

Key Establishment Protocols

Common implementation of secure sessions:
• Establish a secret key known only to two parties
• Then use block ciphers for confidentiality, HMAC for

authentication, and so on
Challenge: how to establish a secret key

• Using only public information?
• Even if the two parties share a long-term secret, a fresh

key should be created for each session
– Long-term secrets are valuable; want to use them as sparingly as

possible to limit exposure and the damage if the key is
compromised

– (Background: For N parties, there are N choose 2 = N*(N-1)/2
pairs of parties.)

Key Establishment Techniques

Use a trusted key distribution center (KDC)
• Every party shares a pairwise secret key with KDC
• KDC creates a new random session key and then

distributes it, encrypted under the pairwise keys
– Example: Kerberos

Use public-key cryptography
• Diffie-Hellman authenticated with signatures

– Example: IKE (Internet Key Exchange)

• One party creates a random key, sends it encrypted under
the other party’s public key
– Example: TLS (Transport Layer Security)

Early Version of SSL (Simplified)

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB(“Alice”, sigAlice(NB))

fresh session key

encryptKAB(NB)

fresh random number

 Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows her

private key… Alice must have signed NB… NB is fresh and random
and I sent it encrypted under KAB… Alice could have learned NB only
if she knows KAB… She must be the person who sent me KAB in the
first message...

Breaking Early SSL

Alice
Charlie

(with an evil side)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB(NB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB(NB)
encryptKAC(NB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB(NB)
encryptKAC(NB)

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB(NB)
encryptKAC(NB)

encryptKCB(“Alice”, sigAlice(NB))

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

