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Class updates

® Remember current events and security reviews are due
this Friday

® | ockpicks and now Fingerprint molds are available
in my office

® Office hours or by appointment

e Office hours today in CSE 210




Class updates (cont.)

® Lab 3 coming soon - Privacy
® Working out the details with the lawyers

® Homework 3 (last homework!) out by Wednesday -
Hashing and Asymmetric Cryptography




Some Number Theory Facts

@ Euler totient function ¢(n) where n=1 is the number

of integers in the [1,n] interval that are relatively
prime to n

e Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

® Euler’s theorem:
if acZ *, then a«("=1 mod n
Z.*: multiplicative group of integers mod n (integers
relatively prime to n)
® Special case: Fermat’s Little Theorem
if p is prime and gcd(a,p)=1, then a*'=1 mod p




RSA Cry ptOSYSte m [Rivest, Shamir, Adleman 1977]

¢ Key generation:

e Generate large primes p, g
— Say, 1024 bits each (need primality testing, too)

e Compute n=pqg and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = (d,n)
® Encryption of m: ¢ = m® mod n
e Modular exponentiation by repeated squaring

¢ Decryptionof c: ¢ mod n = (mM&)4d modn =m




Why RSA Decryptlon Works

Oe d 1 mod cp(n), thus e- d 1+k cp(n) for some k -
Can rewrite: e-d=1+k(p-1)(g-1)

® Let m be any integer in Z,
¢ If gcd(m,p)=1, then me=m mod p
e By Fermat’s Little Theorem, mP-1=1 mod p
e Raise both sides to the power k(g-1) and multiply by m
e mitk(P-D(@a-D=m mod p, thus me=m mod p
e By the same argument, me=m mod q

¢ Since p and q are distinct primes and p-q=n,
me?=m mod n (using the Chinese Remainder Theorem)
@ True for all m in Z,, not just m in Zn*




Why Is RSA Secure?

2 given n=pq, e such that

gcd(e,(p-1)(g-1))=1 and ¢, find m such that

me=c mod n
e i.e., recover m from ciphertext c and public key (n,e) by
taking et root of c

e There is no known efficient algorithm for doing this

¢ problem: given positive integer n, find
primes p;, ..., p, such that n=p,ip,e2...p,

¢ If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA

e It may be possible to break RSA without factoring n




Caveats

® e =3 is a common exponent

e If m < n'/3, then c = M3 < n and can just take the cube
root of ¢ to recover m
— Even problems if "pad” m in some ways [Hastad]
e Let ¢ = m3 mod ni - same message is encrypted to
three people
— Adversary can compute m3 mod ninz2nsz (using CRT)
— Then take ordinary cube root to recover m

¢ Don't use RSA directly for privacy!




Integrity in RSA Encryptlon

OPIaln RSA does not prowde |ntegr|ty
e Given encryptions of m, and m,, attacker can create
encryption of my-m,
—(my&) - (m,®) mod n = (M;-m,)®¢ mod n
o Attacker can convert m into mk without decrypting
— (Mm&)* mod n = (M“)® mod n
¢ In practice, OAEP is used: instead of encrypting M,
encrypt MOG(r) ; rdH(MOG(r))
e r is random and fresh, G and H are hash functions

e Resulting encryption is plaintext-aware: infeasible to
compute a valid encryption without knowing plaintext

— ... if hash functions are “good” and RSA problem is hard




OAEP (image from PKCS #1 v2.1)
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Today So Far

® Defined RSA primitives
Encryption and Decryption
Underlying number theory

Practical concerns, some mis-uses

OAEP




Digital Signatures: Basic Idea

public key

private key

public key {% : . .
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Alice

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key




RSA Slgnatures

OPubllc key IS (n e), prlvate key IS d

¢ To sign message m: s = m“ mod n

e Signing and decryption are the same underlying operation
in RSA

e It's infeasible to compute s on m if you don’t know d

¢ To verify signature s on message m:
scmodn=(md)emodn=m
e Just like encryption

e Anyone who knows n and e (public key) can verify
sighatures produced with d (private key)

¢ In practice, also need padding & hashing
e Standard padding/hashing schemes exist for RSA signatures




Encryption and Signatures

¢ Often people think: Encryption and decryption are
Inverses.

® That's a common view
e True for the RSA primitive (underlying component)

¢ But not one we’ll take

e To really use RSA, we need padding
e And there are many other decryption methods




Digital Signature Standard (DSS)

¢ U.S. government standard (1991-94)
e Madification of the ElGamal signature scheme (1985)

¢ Key generation:

e Generate large primes p, q such that g divides p-1
_ 2159 < q < 2160, 2511+64t < p < 2512+64t Where OStS8

e Select heZ,* and compute g=h{P1¥a mod p
e Select random x such 1<x=g-1, compute y=g* mod p

® Public key: (p, g, g, y=g* mod p), private key: x

® Security of DSS requires hardness of discrete log

e If could solve discrete logarithm problem, would extract
X (private key) from g mod p (public key)




DSS: Signing a Message (Skim)

Compute r = (g€ mod p) mod g

Private key

Random secret X q > (F,S) is the
petween 0 and 6 signature on M

Message E f[ S _

Hash function

(SHA-1) Compute s = k'*-(H(M)+x-r) mod g




DSS: Verifying a Signature (Skim)

Message %
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Signature % <

Compute w = s mod g

Public ke
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( \| Compute (gHMw . yrwmod 4 mod
Yq8 p) mod g

p Compare

If they match, signature is valid




