CSE 484 / CSE M 584 (Autumn 2011)

Asymmetric Cryptography

Daniel Halperin
Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Class updates

® Remember current events and security reviews are due
this Friday

® | ockpicks and now Fingerprint molds are available
in my office

® Office hours or by appointment

e Office hours today in CSE 210

Class updates (cont.)

® Lab 3 coming soon - Privacy
® Working out the details with the lawyers

® Homework 3 (last homework!) out by Wednesday -
Hashing and Asymmetric Cryptography

Some Number Theory Facts

@ Euler totient function ¢(n) where n=1 is the number

of integers in the [1,n] interval that are relatively
prime to n

e Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

® Euler’s theorem:
if acZ *, then a«("=1 mod n
Z.*: multiplicative group of integers mod n (integers
relatively prime to n)
® Special case: Fermat’s Little Theorem
if p is prime and gcd(a,p)=1, then a*'=1 mod p

RSA Cry ptOSYSte m [Rivest, Shamir, Adleman 1977]

¢ Key generation:

e Generate large primes p, g
— Say, 1024 bits each (need primality testing, too)

e Compute n=pqg and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = (d,n)
® Encryption of m: ¢ = m® mod n
e Modular exponentiation by repeated squaring

¢ Decryptionof c: ¢ mod n = (mM&)4d modn =m

Why RSA Decryptlon Works

Oe d 1 mod cp(n), thus e- d 1+k cp(n) for some k -
Can rewrite: e-d=1+k(p-1)(g-1)

® Let m be any integer in Z,
¢ If gcd(m,p)=1, then me=m mod p
e By Fermat’s Little Theorem, mP-1=1 mod p
e Raise both sides to the power k(g-1) and multiply by m
e mitk(P-D(@a-D=m mod p, thus me=m mod p
e By the same argument, me=m mod q

¢ Since p and q are distinct primes and p-q=n,
me?=m mod n (using the Chinese Remainder Theorem)
@ True for all m in Z,, not just m in Zn*

Why Is RSA Secure?

2 given n=pq, e such that

gcd(e,(p-1)(g-1))=1 and ¢, find m such that

me=c mod n
e i.e., recover m from ciphertext c and public key (n,e) by
taking et root of c

e There is no known efficient algorithm for doing this

¢ problem: given positive integer n, find
primes p;, ..., p, such that n=p,ip,e2...p,

¢ If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA

e It may be possible to break RSA without factoring n

Caveats

® e =3 is a common exponent

e If m < n'/3, then c = M3 < n and can just take the cube
root of ¢ to recover m
— Even problems if "pad” m in some ways [Hastad]
e Let ¢ = m3 mod ni - same message is encrypted to
three people
— Adversary can compute m3 mod ninz2nsz (using CRT)
— Then take ordinary cube root to recover m

¢ Don't use RSA directly for privacy!

Integrity in RSA Encryptlon

OPIaln RSA does not prowde |ntegr|ty
e Given encryptions of m, and m,, attacker can create
encryption of my-m,
—(my&) - (m,®) mod n = (M;-m,)®¢ mod n
o Attacker can convert m into mk without decrypting
— (Mm&)* mod n = (M“)® mod n
¢ In practice, OAEP is used: instead of encrypting M,
encrypt MOG(r) ; rdH(MOG(r))
e r is random and fresh, G and H are hash functions

e Resulting encryption is plaintext-aware: infeasible to
compute a valid encryption without knowing plaintext

— ... if hash functions are “good” and RSA problem is hard

OAEP (image from PKCS #1 v2.1)

seed

C0))

¥ ¥
maskedSeed

Today So Far

® Defined RSA primitives
Encryption and Decryption
Underlying number theory

Practical concerns, some mis-uses

OAEP

Digital Signatures: Basic Idea

public key

private key

public key {% : . .
- = - \/
—g I—=

Alice

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

RSA Slgnatures

OPubllc key IS (n e), prlvate key IS d

¢ To sign message m: s = m“ mod n

e Signing and decryption are the same underlying operation
in RSA

e It's infeasible to compute s on m if you don’t know d

¢ To verify signature s on message m:
scmodn=(md)emodn=m
e Just like encryption

e Anyone who knows n and e (public key) can verify
sighatures produced with d (private key)

¢ In practice, also need padding & hashing
e Standard padding/hashing schemes exist for RSA signatures

Encryption and Signatures

¢ Often people think: Encryption and decryption are
Inverses.

® That's a common view
e True for the RSA primitive (underlying component)

¢ But not one we’ll take

e To really use RSA, we need padding
e And there are many other decryption methods

Digital Signature Standard (DSS)

¢ U.S. government standard (1991-94)
e Madification of the ElGamal signature scheme (1985)

¢ Key generation:

e Generate large primes p, q such that g divides p-1
_ 2159 < q < 2160, 2511+64t < p < 2512+64t Where OStS8

e Select heZ,* and compute g=h{P1¥a mod p
e Select random x such 1<x=g-1, compute y=g* mod p

® Public key: (p, g, g, y=g* mod p), private key: x

® Security of DSS requires hardness of discrete log

e If could solve discrete logarithm problem, would extract
X (private key) from g mod p (public key)

DSS: Signing a Message (Skim)

Compute r = (g€ mod p) mod g

Private key

Random secret X q > (F,S) is the
petween 0 and 6 signature on M

Message E f[S _

Hash function

(SHA-1) Compute s = k'*-(H(M)+x-r) mod g

DSS: Verifying a Signature (Skim)

Message %

~t

Signature % <

Compute w = s mod g

Public ke

A I I,
(\| Compute (gHMw . yrwmod 4 mod
Yq8 p) mod g

p Compare

If they match, signature is valid

