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Class updates

• Remember current events and security reviews are due 
this Friday

• Lockpicks and now Fingerprint molds are available 
in my office

• Office hours or by appointment

• Office hours today in CSE 210



Class updates (cont.)

• Lab 3 coming soon - Privacy

• Working out the details with the lawyers

• Homework 3 (last homework!) out by Wednesday - 
Hashing and Asymmetric Cryptography



Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number 
of integers in the [1,n] interval that are relatively 
prime to n
• Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1
Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

   Zn*: multiplicative group of integers mod n (integers 
relatively prime to n)

Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)
• Public key = (e,n);  private key = (d,n)

Encryption of m:  c = me mod n
• Modular exponentiation by repeated squaring

Decryption of c:   cd mod n = (me)d mod n = m



Why RSA Decryption Works
 e⋅d=1 mod ϕ(n), thus e⋅d=1+k⋅ϕ(n) for some k

Can rewrite: e⋅d=1+k(p-1)(q-1)

 Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

 Since p and q are distinct primes and p⋅q=n, 
   med=m mod n (using the Chinese Remainder Theorem)
True for all m in Zn, not just m in Zn*



Why Is RSA Secure?

RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by 
taking eth root of c

• There is no known efficient algorithm for doing this
Factoring problem: given positive integer n, find 

primes p1, …, pk such that n=p1
e1p2

e2…pk
ek

 If factoring is easy, then RSA problem is easy, but 
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n



Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!



Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard



OAEP (image from PKCS #1 v2.1)

r⊕H(M⊕G(r))

M⊕G(r)



Today So Far

• Defined RSA primitives

• Encryption and Decryption

• Underlying number theory

• Practical concerns, some mis-uses

• OAEP



Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob



RSA Signatures
Public key is (n,e), private key is d
To sign message m:  s = md mod n

• Signing and decryption are the same underlying operation 
in RSA

• It’s infeasible to compute s on m if you don’t know d
To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)
 In practice, also need padding & hashing

• Standard padding/hashing schemes exist for RSA signatures



Encryption and Signatures

Often people think:  Encryption and decryption are 
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods



Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract 
x (private key) from gx mod p (public key)



DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M



DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod 
p) mod q

Public key

If they match, signature is valid


