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(Reminder:) Symmetric Cryptography

¢ 1 secret key, shared between sender/receiver

® Repeat fast and simple operations lots of times
(rounds) to mix up key and ciphertext

¢ Why do we think it is secure? (simplistic)

o If we do lots and lots and lots of mixing, no simple
formula (and reversible) describing the whole

process (cryptograp
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Public Key Cryptography
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: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself




Public-Key Cryptography

¢ Everyone has 1 private key and 1 public key

¢ Mathematical relationship between private and
public keys

¢ Why do we think it is secure? (simplistic)

e Relies entirely on problems we believe are
“hard”




Applications of Public-Key Crypto

® Encryption for confidentiality

e Anyone can encrypt a message
— With symmetric crypto, must know secret key to encrypt

e Only someone who knows private key can decrypt
e Key management is simpler (or at least different)
— Secret is stored only at one site: good for open environments
@ Digital signatures for authentication
e Can “sign” a message with your private key
® Session key establishment

e Exchange messages to create a secret session key
e Then switch to symmetric cryptography (why?)




Diffie-Hellman Protocol (1976)

® Alice and Bob never met and share no secrets

@ Public info: p and ¢

e pis a large prime number, g is a generator of Z,*
- Z2,*={1, 2 ... p-1}; VaeZ,* Ji such that a=g' mod p
— Modular arithmetic: humbers “wrap around” after they reach p

Pick secret, random X Pick secret, random Y

gX mod p
<

Alice

Compute k=(g¥)*=0"¥ mod p Compute k=(g¥)Y=0"Y mod p




Why Is Diffie-Hellman Secure?

® Discrete Logarithm (DL) problem:

given g* mod p, it's hard to extract x
e There is no known efficient algorithm for doing this

e This is not enough for Diffie-Hellman to be secure!

€ Computational Diffie-Hellman (C
given g* and @Y, it's hard to com

DH) problem:

pute g*¥ mod p

e ... unless you know x or y, in which case it's easy

® Decisional Diffie-Hellman (DDH)

problem:

given g* and @Y, it's hard to tell the difference
between g*¥ mod pand g" mod p Where r is random




Properties of Diffie-Hellman

& Assuming DDH problem is hard, Diffie-Heliman
protocol is a secure key establishment protocol against
passive attackers

e Eavesdropper can't tell the difference between established
key and a random value

e Can use new key for symmetric cryptography
— Approx. 1000 times faster than modular exponentiation
¢ Diffie-Hellman protocol (by itself) does not provide
authentication




Properties of Diffie-Hellman

# DDH: not true for integers mod p, but true for other
groups

¢ DL problem in p can be broken down into DL problems for
subgroups, if factorization of p-1 is known.

¢ Common recommendation:
e Choose p = 2g+1 where q is also a large prime.
» Pick a g that generates a subgroup of order g in Z,*

- DDH is hard for this group
- (OK to not know all the details of why for this course.)

e Hash output of DH key exchange to get the key




Diffie-Hellman Protocol (1976)

® Alice and Bob never met and share no secrets

@ Public info: p and

e p, g are large prime numbers, p=2g+1, g a generator for
the subgroup of order g

— Modular arithmetic: numbers “wrap around” after they reach p

Pick secret, random X Pick secret, random Y

g* mod p
<
Alice

Compute k=H((g¥)*)=H(g*Y medp) Compute k=H((gX)Y)=H(g*¥ mod p)




Requirements for Public-Key Encryption

® Key generation: computationally easy to generate a
pair (public key PK, private key SK)

o Computationally infeasible to determine private key SK
given only public key PK

® Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=E, (M)

¢ Decryption: given ciphertext C=E, (M) and private
key SK, easy to compute plaintext M
e Infeasible to compute M from C without SK

e Even infeasible to learn partial information about M
e Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M




Some Number Theory Facts

@ Euler totient function ¢(n) where n=1 is the number

of integers in the [1,n] interval that are relatively
prime to n

e Two numbers are relatively prime if their greatest
common divisor (gcd) is 1

® Euler’s theorem:
if acZ *, then a«("=1 mod n
Z.*: multiplicative group of integers mod n (integers
relatively prime to n)
® Special case: Fermat’s Little Theorem
if p is prime and gcd(a,p)=1, then a*'=1 mod p




RSA Cry ptOSYSte m [Rivest, Shamir, Adleman 1977]

¢ Key generation:

e Generate large primes p, g
— Say, 1024 bits each (need primality testing, too)

e Compute n=pqg and ¢(n)=(p-1)(g-1)
e Choose small e, relatively prime to ¢(n)
— Typically, e=3 or e=216+1=65537 (why?)
e Compute unique d such that ed = 1 mod ¢(n)
e Public key = (e,n); private key = (d,n)
® Encryption of m: ¢ = m® mod n
e Modular exponentiation by repeated squaring

¢ Decryptionof c: ¢ mod n = (mM&)4d modn =m




