CSE 484 / CSE M 584 (Autumn 2011)

Software Security (cont.):
Defenses, Adv. Attacks, & More

Daniel Halperin
Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Monday, October 10, 11

Updates Oct. /th

e Coffee/tea signup sheet posted (optional)
® M 584 reading for Oct. |4th posted

® Security reviews & Current events

e |ab |

Monday, October 10, 11

Today

® Randomness
® Software defenses
® Advanced attacks

® Advanced defense

Monday, October 10, 11

i A World of Action!

Check | Bet (35)

r.-ﬂl}.\.' A
[[
[T

I

anajoe

Options
Sit Out

Dealer Text
Leave 84330 :

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 10, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

f= PokerGUI

Site Parameters Feset | Eaticel Game Parameters
Hour Offzet 4 Flop Mum Players ﬁ
Minute Offzet -1 "
Y'our Poszition -
T e N s 1+++ ! 7
Second Offzet A g_i_g o “‘our Cards |8c Ih
L & * > &5
& » & & & o
Shuffle Buttan | 'S 5 3 ¥ / Flop [)s [3= [2d
Tirne |1E:E1:4EI
FOLD FOLD FOLD FOLD FOLD FOLD FOLD FOLD 3 1 2
See | |Lww
1o || |[ina
& i
+* ****
* 4 b & & E

| Plaver3 | Playerz | vOU

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 10, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

D|L8m By Scort Apawms

———————

TOUR OF ACCOUNTING

|

www. dlibert.com scottademe® sol com

OVER HERE

Wt HAVE OUR

RANDOM NUMBER
gﬂ-,_ GENERATOR.

NINE NINE
NINE NINE
NINE NINE

1e[i%]s, © 2001 United Feature Syndicate. Inc

Qgs THAT'S THE
il PROBLEM
. WITH RAN-
THAT'S _
e Eam? DOMNESS
YOU CAN
NEVER BE

SURE.

Monday, October 10, 11

How would you test a RNG?

How would you test a RNG?

e Statistical tests: how are the output
values distributed!?

® Spectral tests: plot data in n-D, find
patterns

® Related to compressibility/summarizibility
A: 010101010101010101010101010101
B: 110010000110000111011110111010

Monday, October 10, 11

RANDU - famously bad PRNG

o X[i+1] = 65539 * X[i] (mod 23?)
e All X[i] are odd!

3-D plot of .
RANDU output X
(Wikipedia, RANDU article) j

RANDU - famously bad PRNG

One of us recalls producing a “random” plot with only 11
planes, and being told by his computer center’s programming
consultant that he had misused the random number
generator: “We guarantee that each number is random

individually, but we don’t guarantee that more than one of

them is random.” Figure that out.
—W. H. Press et al, 1Bl

(Wikipedia, RANDU article)

Monday, October 10, 11

Where do (good) random
numbers come from!?

Where do (good) random
numbers come from!?

® Humans: keyboard, mouse input

® Timing: interrupt firing, arrival of packets
on the network interface

® Physical processes: unpredictable physical
phenomena

Monday, October 10, 11

SGl’s LavaRand

(http://hackaday.com/2005/06/05/lava-lamp-random-number-generator/)

Monday, October 10, 11

http://hackaday.com/2005/06/05/lava-lamp-random-number-generator/
http://hackaday.com/2005/06/05/lava-lamp-random-number-generator/

Open Source LavaRnd

® Camera CCD looking into
an empty, dark, shielded can

® Measuring background
radiation
“thermal noise”

® Quantum process:
randomness from
Heisenberg’s Uncertain
Principle

(http://www.lavarnd.org/what/process.html)

Monday, October 10, 11

http://www.lavarnd.org/what/process.html
http://www.lavarnd.org/what/process.html

Physical RNGs in CPUs

e State of uninitialized memory
when machine powers on

A o = - ﬂ:# H ey entropy
- IFI::: . ::::Eﬂ'“ mm"mm H:_H_h::“:: 1.0
::}Hﬂlﬁ: -~ w as T
b =y [
g e N (Holcomb, Burleson, Fu,
Eehl] Bl e ‘Lﬂ# S | |IEEE Trans. Comp 58(9),
q:::
i il S I
L EHEEEE P 0.4 Sept. 2009)
H:: 13:_ ::Eﬂ | g .
UL R | ()
e 1 ‘_;? gEEEt.E . H {FIE
Eifsiszass = H FFE#
:ii:t——ﬁ'# : Tl 0.0

® Tiny variations in voltage over resistor

Monday, October 10, 11

Obtalnmg Pseudorandom Numbers

0 For securlty appllcatlons want cryptographlcally
secure pseudorandom numbers”
@ Libraries include:
e OpenSSL
e Microsoft’s Crypto API
@ Linux:
e /dev/random
e /dev/urandom - nonblocking, possibly less entropy
¢ Internally:

e Entropy pool gathered from multiple sources
e Physical sources

Monday, October 10, 11

Buffer overflow attacks

void foo (char *argv[]) Caller’s Stack
{ stack

push 3ebp frame

mov 3esp, 3ebp

char buf[128]; ret/IP

sub $0x88, %esp 7
mov 0x8 (%ebp), %eax Saved FP

strcpy(buf, argv[1]);

add S0x4, %eax

mov (%eax),%eax

mov 2eax,0x4 (%esp)
lea -0x80 (%ebp), %seax
mov ¥eax, (sesp)

call 804838c <strcpy@plt>

}

leave
ret

Monday, October 10, 11

How to defend against this!?

void foo (char *argv[]) Caller’s B3 Z T ¢

{ o stack

push 3ebp

mov ¥esp, 3ebp frame

char buf[128]; ret/IP

sub $S0x88, %esp

mov 0x8(%ebp), %eax Saved FP \4

strcpy(buf, argv[I1]);

add S0x4,%eax

mov (%eax) ,3eax

mov 2eax,0x4 (3%esp)
lea -0x80 (%ebp), 3eax
mov zeax, (3esp)

call 804838c <strcpyl@plt>

}

leave
ret

Monday, October 10, 11

Stack Canary

Caller’s

void foo (char *argv[])

{

int canary = <random>;
char buf[128];

strcpy(buf, argv[1]);
assert(canary unchanged);

}

stack
frame

ret/IP

Saved FP

Canary

Stack

Monday, October 10, 11

Stack Canary

void foo (char *argv[]) Caller’s

stack
{ frame Stack
int canary = <random>;
char buf[128]; ret/IP
strcpy(buf, argv[1]); saved FP
assert(canary unchanged);
} Canary \ /

Any Canary Advice?

Monday, October 10, 11

Stack Canary

void foo (char *argv[]) Caller’s

stack
{ frame Stack
int canary = <random>;
char buf[128]; ret/IP
strcpy(buf, argv[1]); saved EP
assert(canary unchanged);
} Canary \ /

Any Canary Advice?
* Null byte stops strcpy() bugs
* CR-LF stops gets() bugs
* EOF stops fread() bugs

Monday, October 10, 11

StackGuard Implementation

¢ StackGuard requires code recompilation

¢ Checking canary integrity prior to every function
return causes a performance penalty
e For example, 8% for Apache Web server

¢ PointGuard also places canaries next to function
pointers and setjmp buffers
o Worse performance penalty

¢ StackGuard doesn’t completely solve the problem
(can be defeated)

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - spr RET

H_I
Suppose program contains strcpy(dst,buf) Retur execution to

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - spr RET

H_I
Suppose program contains strcpy(dst,buf) — Retun exeationto

. BE

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - spr RET

H_I
Suppose program contains strcpy(dst,buf) — Retun exeationto

BadPointer, Gttack code - spr RET

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - spr RET

\""\f""l
Suppose program contains strcpy(dst,buf) — Retun exeationto

02 DZOZOZ ZOZOZ0ZY(
DXDIDIXIXIXIXIXX]
XX

BadPointer,Yclttack code

sfp J RET

Overwrite destination of strcpy with RET position

Monday, October 10, 11

Defeating StackGuard (Example, Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack

o strcpy will write into RET without touching canary!

buf dst - spr RET

__Y__J
Suppose program contains strcpy(dst,buf) — Retun exeationto

202 DZOZOZ ZOZOZOZ
mma%m&%m&

BadPointer,éttack code [RRET spr RET

DDIIXIXIIXIXIX]

IR R IR)

BadPointer here

/\
Overwrite destination of strcpy with RET position / strcpy will copy

Monday, October 10, 11

Non- Executable Stack

0 NX b|t for pages in memory
¢ Modern Intel and AMD processors support
e Modern OS support as well
¢ Some applications need executable stack
e For example, LISP interpreters
® Does not defend against return-to-libc exploits

e Overwrite return address with the address of an existing
library function (can still be harmful)

e Newer: Return-oriented programming
@ ...nor against heap and function pointer overflows

¢ ...nor changing stack internal variables (auth
flag, ...)

Monday, October 10, 11

PointGuard

¢ Attack: overflow a function pointer so that it points
to attack code

® Idea: encrypt all pointers while in memory

e Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
— Pointers cannot be overflown while in registers

¢ Attacker cannot predict the target program’s key

e Even if pointer is overwritten, after XORing with key it will
dereference to a “random” memory address

Monday, October 10, 11

Normal Pointer Dereference [cowan]

CPU

1. Fetch pointer value 2. Access data referenced by pointer
7 K
Pointer
Memory 0x1234 Data
0x1234

CPU

2. Access attack code referenced
by corrupted pointer

1. Fetch pointer value

Corrupted pointer Attack
. -QXI&\ Data
Memory 0x1340 ol
0x1234 0x1340

Monday, October 10, 11

PointGuard Dereference [Cowan]

. o L T - R AW N) e W - A AW N) e e W - R At N L T - A AW
2 ol - s ~2 ol - s 2 a - 3 2 ol - J 2
— : [el z 1l F LS _ [2 nl : [el

CPU

1. Fetch pointer Ox1234 2. Access data referenced by pointer
value Decrypt
e
7)
Encrypted pointer
Memory 0x7239 Data

0x1234

Decrypts to
random value

2. Access random address;
0x9786 segmentation fault and crash

1. Fetch pointer
value Decrypt
Z
Corruptgd pointer Attack T
—0x7239 | Data
Memory 0x1340 code
0x1234 0x1340 0x9786

Monday, October 10, 11

PointGuard Issues

® Must be very fast
e Pointer dereferences are very common
® Compiler issues

e Must encrypt and decrypt only pointers

o If compiler “spills” registers, unencrypted pointer values
end up in memory and can be overwritten there

¢ Attacker should not be able to modify the key
e Store key in its own non-writable memory page

® PG'd code doesn’t mix well with hormal code
e What if PG'd code needs to pass a pointer to OS kernel?

Monday, October 10, 11

Other solutions

¢ Use safe programming languages, e.g., Java
e What about legacy C code?

¢ Static analysis of source code to find overflows

€ Randomize stack location or encrypt return address
on stack by XORing with random string

e Attacker won't know what address to use in his or her
string

Monday, October 10, 11

Timing Attacks

® Assume there are no “typical” bugs in the
software

e No buffer overflow bugs

e No format string vulnerabilities
e Good choice of randomness

e Good design

® The software may still be vulnerable to timing
attacks

e Software exhibits input-dependent timings
¢ Complex and hard to fully protect against

Monday, October 10, 11

Password Checker

® Functional requirements

e PwdCheck(RealPwd, CandidatePwd) should:
— Return TRUE if RealPwd matches CandidatePwd
— Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long

¢ Implementation (like TENEX system)

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to8do
if (RealPwd[i] !'= CandidatePwd][i]) then
return FALSE
return TRUE

@ Clearly meets functional description

Monday, October 10, 11

Attacker Model

““PwdCheck(RealPwd, CandidatePwd) 7/"both 8 chars™*
fori=1to8do

if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

¢ Attacker can guess CandidatePwds through some
standard interface

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

Monday, October 10, 11

Attacker Model

““PwdCheck(RealPwd, CandidatePwd) 7/"both 8 chars™*
fori=1to8do
sleep for I second
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

¢ Attacker can guess CandidatePwds through some
standard interface

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

Monday, October 10, 11

Attacker Model

““PwdCheck(ReatPwd, CandidatePwd)//"both 8 chars™*
fori=1to8do
sleep for I second
if (RealPwd[i] '= CandidatePwd[i]) then
return FALSE
return TRUE

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

® Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,

e Total tries: 256*8 = 2048

Monday, October 10, 11

Other Examples

ial

® Plenty of other examples of timings attacks

o AES cache misses
— AES is the “"Advanced Encryption Standard”
— It is used in SSH, SSL, IPsec, PGP, ...

e RSA exponentiation time
— RSA is a famous public-key encryption and signature scheme
— It's also used in many cryptographic protocols and products

Monday, October 10, 11

