CSE 484 / CSE M 584 (Autumn 2011)

Software Security: Buffer
Overflow Attacks and Beyond

Daniel Halperin
Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell,
Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Monday, October 3, 11

Goals for Today

¢ Software security
o Software lifecycle
o Buffer overflow attacks
e Other software security issues

¢ Lab 1 online this afternoon

Monday, October 3, 11

Software Lifecycle (Simplified)

® Requirements
@ Design

¢ Implementation
@ Testing

® Use

Monday, October 3, 11

Software Lifecycle (Simplified)

® Requirements
@ Design

¢ Implementation
@ Testing

® Use

Monday, October 3, 11

Software problems are ubiquitous

Y A T TN e i W o R o " TR D A T TN e e W TR D A T e B LTSI e e W -
" g 2L ar. “n o gt i DT ILNE ol atf N : D INE ol n N . D BN 2L ar. “n o gt i i o ol atf N v g

Posted by kdawson on Sunday February 25, @06:35PM
from the dare-you-to-cross-this-line dept.

mgh02114 writes

"The new US stealth fighter, the F-22 Haptor, was deployed for the first time to Asia earlier this month. On
Feb. 11, twelve Haptors flying from Hawail to Japan were forced to turn back when a software glitch crashed
all of the F-225' on-board computers as they crossed the international date line. The delay in arrival in Japan
was previously reported, with rumors of problems with the software. CNN television, however, this morning
reported that every fighter completely lost all navigation and communications when they crossed the
international date line. They reportedly had to turn around and follow their tankers by visual contact back to
Hawaii. According to the CNN story, if they had not been with their tankers, or the weather had been bad, this would have
been sericus. CNN has not put up anything on their website yet."

Monday, October 3, 11

Software problems are ubiquitous

1985-1987 -- Therac-25 medical accelerator. A radiation therapy
device malfunctions and delivers lethal radiation doses at several
medical facilities. Based upon a previous design, the Therac-25 was an
"improved" therapy system that could deliver two different kinds of
radiation: either a low-power electron beam (beta particles) or X-rays.
The Therac-25's X-rays were generated by smashing high-power
electrons into a metal target positioned between the electron gun and
the patient. A second "improvement" was the replacement of the older
Therac-20's electromechanical safety interlocks with software control,
a decision made because software was perceived to be more reliable.

What engineers didn't know was that both the 20 and the 25 were
built upon an operating system that had been kludged together by a
programmer with no formal training. Because of a subtle bug called a
"race condition," a quick-fingered typist could accidentally configure
the Therac-25 so the electron beam would fire in high-power mode
but with the metal X-ray target out of position. At least five patients
die; others are seriously injured.

http://www.wired.com/software/coolapps/news/2005/11/69355

Monday, October 3, 11

http://www.wired.com/software/coolapps/news/2005/11/69355
http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

January 15, 1990 -- AT&T Network Outage. A bug in a new
release of the software that controls AT&T's #4ESS long distance
switches causes these mammoth computers to crash when they
receive a specific message from one of their neighboring machines -- a
message that the neighbors send out when they recover from a crash.

One day a switch in New York crashes and reboots, causing its
neighboring switches to crash, then their neighbors' neighbors, and so
on. Soon, 114 switches are crashing and rebooting every six seconds,
leaving an estimated 60 thousand people without long distance service
for nine hours. The fix: engineers load the previous software release.

http://www.wired.com/software/coolapps/news/2005/11/69355

Monday, October 3, 11

http://www.wired.com/software/coolapps/news/2005/11/69355
http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ublqwtous

0 NASA Mars Lander

e Bug in translation between English and metric units
o Cost taxpayers $165 million

¢ Denver Airport baggage system

e Bug caused baggage carts to become out of “sync,”
overloaded, etc.

e Delayed opening for 11 months, at $1 million per day

¢ Other fatal or potentially fatal bugs
e US Vicennes tracking software
e MV-22 Osprey
e Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html

Monday, October 3, 11

http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html
http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html

Adversarial Failures

¢ Software bugs are bad
e Consequences can be serious

® Even worse when an intelligent adversary wishes
to exploit them!

o Intelligent adversaries: Force bugs into “worst
possible” conditions/states

e Intelligent adversaries: Pick their targets

¢ Buffer overflows bugs: Big class of bugs

e Normal conditions: Can sometimes cause systems to
fail

e Adversarial conditions: Attacker able to violate security
of your system (control, obtain private information, ...)

Monday, October 3, 11

i N At i S N) e e W A A L W AL w7 e - A W AL - e " s W AL - T - s W AL - - -~ - »
P R E SLAFN. ? N : & ’ el - n e P o . Cat. S . o = “Cat. - S o = ~— 2 ¢ < o 2

Buffer Overflows

Monday, October 3, 11

A Bit of History: Morris Worm

¢ Worm was released in 1988 by Robert Morris
e Graduate student at Cornell, son of NSA chief scientist

e Convicted under Computer Fraud and Abuse Act,
sentenced to 3 years of probation and 400 hours of
community service

e Now an EECS professor at MIT

¢ Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

® Due to a coding error, it created new copies as fast
as it could and overloaded infected machines

¢ $10-100M worth of damage

Monday, October 3, 11

Morris Worm and Buffer Overflow

¢ One of the worm'’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems

e By sending special string to finger daemon, worm
caused it to execute code creating a new worm copy

e Unable to determine remote OS version, worm also
attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

Monday, October 3, 11

More History

¢ Very common cause of Internet attacks

e In 1998, over 50% of advisories published by CERT

(computer security incident report team) were caused by
buffer overflows

¢ Morris worm (1988): overflow in £ingerd
e 6,000 machines infected

® CodeRed (2001): overflow in MS-IIS server
e 300,000 machines infected in 14 hours

¢ SQL Slammer (2003): overflow in MS-SQL server
e 75,000 machines infected in 10 minutes (!!)

Monday, October 3, 11

Attacks on Memory Buffers

¢ Buffer is a data storage area inside computer
memory (stack or heap)

e Intended to hold pre-defined amount of data
— If more data is stuffed into it, it spills into adjacent memory

e If executable code is supplied as “data”, victim’s machine
may be fooled into executing it — we'll see how

— Can give attacker control over machine
@ First generation exploits: stack smashing

¢ Later generations: heaps, function pointers, off-by-
one, format strings and heap management
structures

Monday, October 3, 11

BNE G~ Wi S NSNS R b 2 SNE G NN S NS R SN

— S— W TN e W
S o NN S NS 2o &S N

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
€ No bounds checking on strcpy()

@ If str is longer than 126 bytes
e Program may crash
e Attacker may change program behavior

Monday, October 3, 11

NG 4 WA AN R D BNE s AN NS RN

- » - A AN L -y v » b n N
LR PRI R 2o & N g SURNE o, NS 2

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
€ No bounds checking on strcpy()

@ If str is longer than 126 bytes
e Program may crash
e Attacker may change program behavior

Monday, October 3, 11

NS G- Wi S NSNS R b 2" BNE G A NSNS NS R AN

rETIY Y - .~ - TR
& s NN 2 N

¢ Suppose Web server contains this function

void func (char *str) {

char buf[126];
strcpy (buf,str) ;

}
€ No bounds checking on strcpy()

@ If str is longer than 126 bytes
e Program may crash
e Attacker may change program behavior

Monday, October 3, 11

ORI NG S DA R P NG S DA R P NG S D R T R TN

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[l126];

strcpy (buf,str) ;

}
€ Authenticated variable non-zero when user has
extra privileges

® Morris worm also overflowed a buffer to overwrite
an authenticated flag in fingerd

Monday, October 3, 11

NS 4 NN A R b BNE A AN NS R ANE A AN S NSO R D ENE s B ANS AS R

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[l126];

strcpy (buf,str) ;

}
€ Authenticated variable non-zero when user has
extra privileges

® Morris worm also overflowed a buffer to overwrite
an authenticated flag in fingerd

Monday, October 3, 11

BNE 64 RN S NS R b SNE J A RSN S NG R b D ENE 6 NSNS NS R b NS s BAN S

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
€ Authenticated variable non-zero when user has
extra privileges

® Morris worm also overflowed a buffer to overwrite
an authenticated flag in fingerd

Monday, October 3, 11

BNE 64 RN S NS R b SNE J A RSN S NG R b D ENE 6 NSNS NS R b NS s BAN S

¢ Suppose Web server contains this function

void func (char *str) {

int authenticated = 0;
char buf[126];

strcpy (buf,str) ;

}
€ Authenticated variable non-zero when user has
extra privileges

® Morris worm also overflowed a buffer to overwrite
an authenticated flag in fingerd

Monday, October 3, 11

Memory Layout

PR N VTR T AT L T =y 7 AR N L >y T »
—a! ™ NN, NS R NS e AN S NS R NS e AN S NG R NS

® Text region: Executable code of the program
® Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Text region Stack

Addr 0x00...0 Addr OxFF..F

Monday, October 3, 11

Memory Layout

:: ’_ b .-‘-.‘0‘; V).:'.)- - PO« Tl e e W o 2 oW, AT v b

o L -~y T R
Elanl - ol .4 LG o SUNNE N R NS

® Text region: Executable code of the program
® Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Text region Stack

Addr 0x00...0 Addr OxFF..F

Monday, October 3, 11

ANS S K SN IE LSS G S SR LTS N

¢ Suppose Web server contains this function
void func (char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Caller’s frame

Addr OxFF...F

Monday, October 3, 11

Stack Buffers

¢ Suppose Web server contains this function
void func (char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

i Caller’s frame

Args Addr OxFF..F

Monday, October 3, 11

Stack Buffers

A T TN L e e W TR Y N T T L e e W ' R A W N L e W

- v A
.’z'_.."r ol T. S RNE e AN NS R DN G SN NSRS NS

¢ Suppose Web server contains this function
void func (char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

ret/IP‘ Suar Caller’s frame

Args Addr OxFF..F

Monday, October 3, 11

Stack Buffers

S ——— ORI TV TR« T TS B e il W AR L Tal

- W AL T SR &
FSLAFS A S o DCRLNE o AN NSRS RS LG F LA A SN o DL

¢ Suppose Web server contains this function
void func (char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

ret/IP‘ Suar Caller’s frame

| A% Addr OXFF..F

Execute code at this address after func() finishes

Monday, October 3, 11

Stack Buffers

B W TN L B e W A A N LA LT T M A S alh

» 3y . B e Y
ol n S o D BN 2L ar. “n S o DT INE F LA A e 05 DL

¢ Suppose Web server contains this function
void func (char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

Saved FP‘ret/IP‘ Sy Caller’s frame

| A% Addr OxFF.F

Execute code at this address after func() finishes

Monday, October 3, 11

Stack Buffers

. - e e’ W - L Nl E - . - -y ™ A W - . -
. X ¢ _ b L NEAGS R RN ¢ SORNE S NSRS R e NS

¢ Suppose Web server contains this function
void func (char *str) 2 Allocate local buffer
(126 bytes reserved on stack)
char buf[l126];

strcpy (buf,str) ; % Copy argument into local buffer

}
¢ When this function is invoked, a new frame with
local variables is pushed onto the stack

buf Saved FP‘ret/IP‘ Sy Caller’s frame

Local variables ‘ Args Addr OxFF..F

Execute code at this address after func() finishes

Monday, October 3, 11

What If Buffer is Overstuffed?

¢ Memory pointed to by str is copied onto stack...

void func(char *str) {

. strcpy does NOT check whether the string
char buf [12 6] ! 2 at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
@ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

buf Saved FP‘ret/IP‘ Sy Caller’s frame

Local variables ‘ Args Addr OxFF..F

Monday, October 3, 11

What If Buffer is Overstuffed?

- A ERA &
i 200 NS

¢ Memory pointed to by str is copied onto stack...

void func(char *str) {

. strcpy does NOT check whether the string
char buf [12 6] ! 2 at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
@ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

ame

\ J

Local variables Args Addr OxFF..F

Monday, October 3, 11

What If Buffer is Overstuffed?

- A ERA &
i 200 NS

¢ Memory pointed to by str is copied onto stack...

void func(char *str) {

. strcpy does NOT check whether the string
char buf [12 6] ! 2 at *str contains fewer than 126 characters
strcpy (buf,str) ;

}
@ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

ame

\ J

Local variables Args Addr OxFF..F

Monday, October 3, 11

Executlng Attack Code

‘r-\

0 Suppose buffer contams attacker created strrng

e For example, *str contains a string received from the
network as input to some network service daemon

S Caller’s frame

Addr OxFF...F

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Monday, October 3, 11

Executlng Attack Code

.--..'«) N \' ,..‘_-4

0 Suppose buffer contams attacker created strrng

e For example, *str contains a string received from the
network as input to some network service daemon

S Caller’s frame

Addr OxFF...F

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Monday, October 3, 11

Executlng Attack Code

St

0 Suppose buffer contams attacker created strlng

e For example, *str contains a string received from the
network as input to some network service daemon

S Caller’s frame

Addr OxFF...F

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Monday, October 3, 11

Executlng Attack Code

,-

0 Suppose buffer contams attacker created strlng

e For example, *str contains a string received from the
network as input to some network service daemon

Suan Caller’s frame

Addr OxFF...F
N
Attacker puts actual assembly In the overflow, a pointer back
instructions into his input string, e.qg., into the buffer appears in
binary code of execve("/bin/sh”) the location where the system
expects to find return address

¢ When function exits, code in the buffer will be
executed, giving attacker a shell

e Root shell if the victim program is setuid root

Monday, October 3, 11

Buffer Overflow Issues

® Executable attack code is stored on stack, inside
the buffer containing attacker’s string

e Stack memory is supposed to contain only data, but...

¢ Overflow portion of the buffer must contain correct
address of attack code in the RET position

e The value in the RET position must point to the
beginning of attack assembly code in the buffer

— Otherwise application will (probably) crash with segmentation
violation

e Attacker must correctly guess in which stack position his
buffer will be when the function is called

Monday, October 3, 11

Problem: No Range Checking

@ strcpy does not check input size
o strcpy(buf, str) simply copies memory contents into buf
starting from *str until “\0” is encountered, ignoring
the size of area allocated to buf
¢ Many C library functions are unsafe
e strcpy(char *dest, const char *src)
o strcat(char *dest, const char *src)
e gets(char *s)
e scanf(const char *format, ...)
o printf(const char *format, ...)

Monday, October 3, 11

Does Range Checking Help?

® strncpy(char *dest, const char *src, size_t n)

o If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

¢ Potential overflow in htpasswd.c (Apache 1.3):

strcpy(record,user);

Copies username (“user”) into buffer (“record”),
Strcat(record ,’ e)I then appends “:” and hashed password (“cpw”)
strcat(record,cpw); ...

@ Published “fix":

. strncg (record, user MAX STRING LEN-1);
strca %record

strncat (record, cpw MAX_STRING_LEN 1); ..

Monday, October 3, 11

Misuse of strncpy in htpasswd “Fix”

® Published “fix"” for Apache htpasswd overflow:

. strncg (record, user MAX STRING LEN-1);
strca %record

strncat (record, cpw MAX_STRING_LEN 1), ..

MAX_STRING_LEN bytes allocated for record buffer

N

-~

Monday, October 3, 11

Misuse of strncpy in htpasswd “Fix”

® Published “fix"” for Apache htpasswd overflow:

. strncg (record,user ,MAX STRING LEN-1);
strca %record ”'” ;

strncat (record, cpw MAX_STRING_LEN—l) ;

MAX_STRING_LEN bytes allocated for record buffer

N

-~

contents of *user

VAN
ZERN
Put up to MAX_STRING_LEN-1
characters into buffer

Monday, October 3, 11

Misuse of strncpy in htpasswd “Fix”

® Published “fix"” for Apache htpasswd overflow:

. strncg (record,user ,MAX STRING LEN-1);
strca %record ”'”) ;

strncat (record, cpw, MAX STRING LEN-1);

MAX_STRING_LEN bytes allocated for record buffer

N

-~

contents of *user

AN A\
J \ PUt \\:"
Put up to MAX_STRING_LEN-1 Id—

characters into buffer

Monday, October 3, 11

Misuse of strncpy in htpasswd “Fix”

® Published “fix"” for Apache htpasswd overflow:

. strncg (record,user ,MAX STRING LEN-1);
strca %record ”'”) ;

strncat (record, cpw, MAX STRING LEN-1);

MAX_STRING_LEN bytes allocated for record buffer

A
—
1
contents of *user : contents of *cpw
e A . NG
. | Put ™" Again put up to MAX_STRING_LEN-1

Put up to MAX_STRING_LEN-1
characters into buffer

characters into buffer

Monday, October 3, 11

(:)II EB’/ (:)IIEE (:)\/EEIIICJ\AJ
NS 4 AN NSNS R b ANE A RN NSNS R b BNE s AN S NS R b NS G

® Home-brewed range-checking string copy

e E

- 2 A LT AR &
DRNE o NSRS e DERNE

void notSoSafeCopy (char *input) ({

char buffer[512]; int 1i;
for (i=0; i<=512; i++)
buffer[i] = input[i];
}
void main (int argc, char *argv[]) {
if (argc==2)
notSoSafeCopy (argv([1l]) ;

2 fal

T

AN O - »
NS Rovho RS

Monday, October 3, 11

(:)II EB’/ (:)IIEE (:)\/EEIIICJ\AJ
I R TG S P T W 1 G S T N T R TG S P A

® Home-brewed range-checking string copy

IO LA S, N e d v B b o SURNE NS RS

AR N L d - »

void notSoSafeCopy (char *input) ({
char buffer[512]; int 1i;

for (i=0; iK=9p12; i++)
buffer[i] = input[i];
}
void main(int argc, char *argv[]) {
if (argc==2)
notSoSafeCopy (argv([1l]) ;

» Wl N e e W W »
LN Ry b RS

This will copy 513
characters into
buffer. Oops!

Monday, October 3, 11

Off-By-One Overflow

WA« AL TN e i W i A e T

e -
- N . i o Evlnr. e 05 D INE

® Home-brewed range-checking string copy
void notSoSafeCopy (char *input) ({

- . This will copy 513
char buffer[512]; int i; characters into

for (i=0; 1@512 i) buffer. Oops!
buffer[i] = input|[i];

}
void main (int argc, char *argv[]) {
if (argc==2)
notSoSafeCopy (argv([1l]) ;

}
¢ 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame
e On little-endian architecture, make it point into buffer
o RET for previous function will be read from buffer!

Monday, October 3, 11

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer

A A
”’ N[\

Heap

|

Legitimate function F

(elsewhere in memory)

Monday, October 3, 11

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer
— —— ~ —A—
Heap attack code

|

Legitimate function F

(elsewhere in memory)

Monday, October 3, 11

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer
-~ —" N7 A \
Heap attack code overflow
A

Legitimate function F

(elsewhere in memory)

Monday, October 3, 11

Format Strings in C

—a tut - at

el tat 5 Nl Favlonl

B Tl AT e e W o 2 N T

AL T SR &
ot el . v N F LA A SN o DL

@ Proper use of printf format string:

.. 1int foo=1234;

printf (“foo = %d in decimal, %X in hex”,foo,foo); ..
— This will print
foo = 1234 in decimal, 4D2 in hex

@ Sloppy use of printf format string:

printf (buf) ;

.. char buf[l4]=“Hello, world!”;

// should’ve used printf(“%$s”, buf); ..

— If buffer contains format symbols starting with %, location

pointed to by printf’s internal stack pointer will be interpreted as

an argument of printf. This can be exploited to move printf’s
internal stack pointer.

Monday, October 3, 11

Viewl

-

ng Memory

R W TN e e W L A SNl

e - r e ’ R T T
™ > R D BN 2L ar. “n SN o DT INE ol atf e 05 D INE

® %x format symbol tells printf to output data on

stack

.. printf (“Here is an int: %x”,1); ..

¢ What if printf does not have an argument?

.. char buf[l6]=“"Here is an int: $%$x”;

printf (buf); ..

Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

¢ Or what about:

.. char buf[l6]="“"Here is a string: %s”;

printf (buf); ..

Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

Monday, October 3, 11

Writing Stack with Format Strings

¢ %n format symbol tells printf to write the number
of characters that have been printed

.. printf (“Overflow this!%n”,6 &myVar); ..

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)

¢ What if printf does not have an argument?
.. char buf[l6]="Overflow this!%n”;

printf (buf); ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will
be written.

Monday, October 3, 11

TOCTOU (Race Condition)

€ TOCTOU == Time of Check to Time of Use

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S ISRREG(s.st mode)) {
error("'only allowed to regular files!");
return -1;

}
return open(path, O RDONLY) ;

}
¢ Goal: Open only regular files (not symlink, etc)

¢ Attacker can change meaning of path between stat
and open (and access files he or she shouldn't)

Monday, October 3, 11

Integer Overflc)w and ImpI|C|t Cast

char buf[80],
volid vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

Monday, October 3, 11

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf
http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Integer OverfIOW and ImpI|C|t Cast

char buf[80],
volid vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

Monday, October 3, 11

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf
http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Integer OverfIOW and ImpI|C|t Cast

char buf[80],
volid vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

¢ If len is negative, may copy huge amounts of
input into buf

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

Monday, October 3, 11

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf
http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Integer Overflow and Implicit Cast

size t len = read int from network();

char #*buf;
buf = malloc(len+5);
read(fd, buf, len);

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

Monday, October 3, 11

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf
http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Integer Overflow and Implicit Cast

size t len = read int from network();

char #*buf;
buf = malloc(len+5);
read(fd, buf, len);

¢ What if len is large (e.g., len = OXFFFFFFFF)?

® Then len + 5 = 4 (on many platforms)
® Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from wwwr-inst.eecs.berkeley.edu—implflaws.pdf)

Monday, October 3, 11

http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf
http://www-inst.eecs.berkeley.edu/~cs161/fa05/Notes/implflaws.pdf

Randomness issues

Monday, October 3, 11

Randomness issues

¢ Many applications (especially security ones)
require randomness

Monday, October 3, 11

Randomness issues

¢ Many applications (especially security ones)
require randomness

® Explicit uses:
e (Generate secret cryptographic keys
e Generate random initialization vectors for encryption

Monday, October 3, 11

Randomness issues

¢ Many applications (especially security ones)
require randomness

® Explicit uses:
e (Generate secret cryptographic keys
e Generate random initialization vectors for encryption

¢ Other “"non-obvious” uses:
e Generate passwords for new users

e Shuffle the order of votes (in an electronic voting
machine)

e Shuffle cards (for an online gambling site)

Monday, October 3, 11

C’s rand() Function

0 C has a bU|It-|n random functlon ra.nd.()‘

unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {
next = next * 1103515245 + 12345;
return (unsigned int) (next/65536) % 32768;
}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;
}
® Problem: don't use rand() for security-critical
applications!

e Given a few sample outputs, you can predict
subsequent ones

Monday, October 3, 11

PS3

® Learn all about it in an example Current Event
report from a past iteration of 484

e https://catalyst.uw.edu/gopost/conversation/kohno/
452868

Monday, October 3, 11

https://catalyst.uw.edu/gopost/conversation/kohno/452868
https://catalyst.uw.edu/gopost/conversation/kohno/452868
https://catalyst.uw.edu/gopost/conversation/kohno/452868
https://catalyst.uw.edu/gopost/conversation/kohno/452868

Dr.Dobb's Portal

The World of Software Development

ABOUT US | CONTACT | ADVERTISE | SUBSCRIBE | SOURCE CODE | CURRENT PRINT ISSUE
NEWSLETTERS | RESOURCES | BLOGS | PODCASTS | CAREERS

Windows/.NET

July 22, 2001 . Email " Ml
Randomness and the Netscape Discuss - Rep
Browser [.Zhel.icin.usélash
« Di = ﬂ
How secure is the World Wide Web? . Google
= Spurl = Blinl

Ian Goldberg and David Wagner —

No one was more surprised than Netscape Communications when a pair of

computer-science students broke the Netscape encryption scheme. Ian and
David describe how they attacked the popular Web browser and what they

found out.

Monday, October 3, 11

Problems in Practice

0 One |nst|tut|on used (somethlng I|ke) rand() to
generate passwords for new users

e Given your password, you could predict the passwords
of other users

® Kerberos (1988 - 1996)

e Random number generator improperly seeded

e Possible to trivially break into machines that rely upon
Kerberos for authentication

¢ Online gambling websites
e Random numbers to shuffle cards
e Real money at stake
e But what if poor choice of random numbers?

Monday, October 3, 11

i A World of Action!

Check | Bet (35)

r.-ﬂl}.\.' A
[[
[T

I

anajoe

Options
Sit Out

Dealer Text
Leave 84330 :

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 3, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

f= PokerGUI

Site Parameters Feset | Eaticel Game Parameters
Hour Offzet 4 Flop Mum Players ﬁ
Minute Offzet -1 "
Y'our Poszition -
T e N s 1+++ ! 7
Second Offzet A g_i_g o “‘our Cards |8c Ih
L & * > &5
& » & & & o
Shuffle Buttan | 'S 5 3 ¥ / Flop [)s [3= [2d
Tirne |1E:E1:4EI
FOLD FOLD FOLD FOLD FOLD FOLD FOLD FOLD 3 1 2
See | |Lww
1o || |[ina
& i
+* ****
* 4 b & & E

| Plaver3 | Playerz | vOU

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 3, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

B A World of Actionl

mamajoe

Options
Sit Out

Diealer Text |

Leave E84330

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Monday, October 3, 11

http://www.cigital.com/news/index.php?pg=art&artid=20
http://www.cigital.com/news/index.php?pg=art&artid=20

B A World of Action!

Options

ait Out

Leave

£84330

Big news... CNN, etc..

mamajoe

Diealer Text

Monday, October 3, 11

Other Problems

0 Key generatlon

e Ubuntu removed the randomness from SSL, creating
vulnerable keys for thousands of users/servers

o Undetected for 2 years (2006-2008)

¢ Live CDs, diskless clients
e May boot up in same state every time

¢ Virtual Machines

e Save state: Opportunity for attacker to inspect the
pseudorandom number generator’s state

e Restart: May use same “psuedorandom” value more
than once

Monday, October 3, 11

