
 Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

 HW3 up

 SSL
 User authentication

 SF Prototyping Today, 1pm (Gates Commons, CSE
691): Dedicated time to interact with other
groups.

Wednesday: Guest lectures on Research (Roxana
Geambasu and Karl Koscher)

ExtendedGCD algorithm

 If a and b are relatively prime (gcd = 1), then u is
multiplicative inverse of a modulo b.

SSL

What is SSL / TLS?

Transport Layer Security (TLS) protocol, version 1.2
• De facto standard for Internet security
• “The primary goal of the TLS protocol is to provide

privacy and data integrity between two communicating
applications”

• In practice, used to protect information transmitted
between browsers and Web servers (and mail readers
and ...)

Based on Secure Sockets Layers (SSL) protocol,
version 3.0
• Same protocol design, different algorithms

Deployed in nearly every Web browser

SSL / TLS in the Real World

Application-Level Protection

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

802.11

Protects againt application-level threats
(e.g.,server impersonation), NOT against IP-
level threats (spoofing, SYN flood, DDoS by
data flood)

History of the Protocol
 SSL 1.0

• Internal Netscape design, early 1994?
• Lost in the mists of time

 SSL 2.0
• Published by Netscape, November 1994
• Several weaknesses

 SSL 3.0
• Designed by Netscape and Paul Kocher, November 1996

 TLS 1.0
• Internet standard based on SSL 3.0, January 1999
• Not interoperable with SSL 3.0

– TLS uses HMAC instead of earlier MAC; can run on any port

 TLS 1.2
• Remove dependencies to MD5 and SHA1

“Request for Comments”

Network protocols are usually disseminated in the
form of an RFC

TLS version 1.0 is described in RFC 5246
 Intended to be a self-contained definition of the

protocol
• Describes the protocol in sufficient detail for readers who

will be implementing it and those who will be doing
protocol analysis

• Mixture of informal prose and pseudo-code

Evolution of the SSL/TLS RFC

15.00

31.25

47.50

63.75

80.00

SSL 2.0 SSL 3.0 TLS 1.0

Page count

104 pages for TLS 1.2

TLS Basics

TLS consists of two protocols
• Familiar pattern for key exchange protocols

Handshake protocol
• Use public-key cryptography to establish a shared

secret key between the client and the server

Record protocol
• Use the secret key established in the handshake

protocol to protect communication between the client
and the server

We will focus on the handshake protocol

TLS Handshake Protocol

Two parties: client and server
Negotiate version of the protocol and the set of

cryptographic algorithms to be used
• Interoperability between different implementations of the

protocol
Authenticate client and server (optional)

• Use digital certificates to learn each other’s public keys
and verify each other’s identity

Use public keys to establish a shared secret

Handshake Protocol Structure

C

ClientHello

ServerHello,
[Certificate],
[ServerKeyExchange],
[CertificateRequest],
ServerHelloDone

S[Certificate],
ClientKeyExchange,
[CertificateVerify]

Finished
switch to negotiated cipher

Finished

switch to negotiated cipher
Record of all sent and
received handshake messages

ClientHello

C

ClientHello

S

Client announces (in plaintext):
• Protocol version
• Supported Cryptographic algorithms

struct {
 ProtocolVersion client_version;
 Random random;
 SessionID session_id;
 CipherSuite cipher_suites;
 CompressionMethod compression_methods;
} ClientHello

ClientHello (RFC)

Highest version of the protocol
supported by the client

Session id (if the client wants to
resume an old session)

Set of cryptographic algorithms
supported by the client (e.g., RSA or

Diffie-Hellman)

ServerHello

C

C, Versionc, suitec, Nc

ServerHello

S
Server responds (in plaintext) with:
• Highest protocol version supported by
 both client and server
• Strongest cryptographic suite selected
 from those offered by the client

ServerKeyExchange

C

Versions, suites, Ns,

ServerKeyExchange

SServer sends public-key certificate
containing either RSA, or
Diffie-Hellman public key
(depending on chosen crypto suite)

C, Versionc, suitec, Nc

ClientKeyExchange

C

Versions, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc, suitec, Nc

ClientKeyExchange

Client generates some secret key material
and sends it to the server encrypted with
the server’s public key (if using RSA)

struct {
 select (KeyExchangeAlgorithm) {
 case rsa: EncryptedPreMasterSecret;
 case diffie_hellman: ClientDiffieHellmanPublic;
 } exchange_keys
} ClientKeyExchange
struct {

 ProtocolVersion client_version;
 opaque random[46];
} PreMasterSecret

ClientKeyExchange (RFC)

Random bits from which
symmetric keys will be derived
(by hashing them with nonces)

“Core” SSL 3.0 Handshake (Not TLS)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Secretc}Ks

switch to key derived
from secretc, Nc, Ns

If the protocol is correct, C and S share
some secret key material (secretc) at this point

switch to key derived
from secretc, Nc, Ns

Version Rollback Attack

C

Versions=2.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=2.0, suitec, Nc

{Secretc}Ks

C and S end up communicating using SSL 2.0
(weaker earlier version of the protocol that

does not include “Finished” messages)

Server is fooled into thinking it
is communicating with a client
who supports only SSL 2.0

SSL 2.0 Weaknesses (Fixed in 3.0)

Cipher suite preferences are not authenticated
• “Cipher suite rollback” attack is possible

SSL 2.0 uses padding when computing MAC in
block cipher modes, but padding length field is not
authenticated
• Attacker can delete bytes from the end of messages

MAC hash uses only 40 bits in export mode
No support for certificate chains or non-RSA

algorithms, no handshake while session is open

Protocol Rollback Attacks

Why do people release new versions of security
protocols? Because the old version got broken!

New version must be backward-compatible
• Not everybody upgrades right away

Attacker can fool someone into using the old,
broken version and exploit known vulnerability
• Similar: fool victim into using weak crypto algorithms

Defense is hard: must authenticate version in early
designs

Many protocols had “version rollback” attacks
• SSL, SSH, GSM (cell phones)

Version Check in SSL 3.0 (Approximate)

C

Versions=3.0, suites, Ns,

sigca(S,Ks),

“ServerHelloDone”

S

C, Versionc=3.0, suitec, Nc

{Versionc,Secretc}Ks

If the protocol is correct, C and S share
some secret key material secretc at this point

“Embed” eight 3s into left
side of this secret if server
said Versions=2.0

If “embedded” version information includes
eight 3s but server supports version 3, issue
error.

switch to key derived
from secretc, Nc, Ns

switch to key derived
from secretc, Nc, Ns

2

2

SSL/TLS Record Protection

Use symmetric keys
established in handshake protocol

User Authentication

Basic Problem

?

How do you prove to someone that
 you are who you claim to be?

Any system with access control must solve this problem

Many Ways to Prove Who You Are
What you know

• Passwords
• Secret key

Where you are
• IP address
• Physical location

What you are
• Biometrics

What you have
• Secure tokens

All have advantages and disadvantages

Why Authenticate?

To prevent an attacker from breaking into our
account
• Co-worker, family member, ...

To prevent an attacker from breaking into any
account on our system
• Unix system

– Break into single account, then exploit local vulnerability or
mount a “stepping stones” attack

• Calling cards
• Building

To prevent an attacker from breaking into any
account on any system

Also Need

Usability!
• Remember password?
• Have to bring physical object with us all the time?

Denial of service
• Stolen wallet
• Try to authenticate as you until your account becomes

locked
• What about a military or other mission critical scenario

– Lock all accounts - system unusable

Password-Based Authentication

User has a secret password.
 System checks it to authenticate the user.

• May be vulnerable to eavesdropping when password is
communicated from user to system

How is the password stored?
How does the system check the password?
How easy is it to remember the password?
How easy is it to guess the password?

• Easy-to-remember passwords tend to be easy to guess
• Password file is difficult to keep secret

Common usage modes

Amazon = t0p53cr37

UWNetID = f0084r#1

Bank = a2z@m0$;

Image from http://www.interactivetools.com/staff/dave/damons_office/

Common usage modes

Write down passwords
Share passwords with others
Use a single password across multiple sites

• Amazon.com and Bank of America?
• UW CSE machines and Facebook?
• GMail and Facebook?

Use easy to remember passwords
• Favorite <something>?
• Name + <number>?

Other “authentication” questions
• Mother’s maiden name?

Some anecdotes [Dhamija and Perrig]

Users taught how to make secure passwords, but
chose not to do so

Reasons:
• Awkward or difficult
• No accountability
• Did not feel that it was important

Social Engineering

“Hi, I’m the CEO’s assistant. I need you to reset
his password right away. He’s stuck in an airport
and can’t log in! He lost the paper that he wrote
the password on.

“What do you mean you can’t do it!? Do you
really want me to tell him that you’re preventing
him from closing this major deal?

“Great! That’s really helpful. You have no idea
how important this is. Please set the password to
ABCDEFG. He’ll reset it again himself right away.

“Thanks!”

University of Sydney Study [Greening ‘96]

336 CS students emailed message asking them to
supply their password
• Pretext: in order to “validate” the password database

after a suspected break-in

138 students returned their password
30 returned invalid password
200 changed their password
(Not disjoint)

Still, 138 is a lot!

Awkward

How many times do you have to enter your
password before it actually works?
• Sometimes quite a few for me! (Unless I type extra

slowly.)

 Interrupts normal activity
• Do you lock your computer when you leave for 5

minutes?
• Do you have to enter a password when your computer

first boots? (Sometimes it’s an option.)
And memorability is an issue!

Memorability [Anderson]

Hard to remember many PINs and passwords
One bank had this idea

• If pin is 2256, write your favorite 4-letter word in this
grid

• Then put random letters everywhere else

Memorability [Anderson]

Problem!
Normally 10000 choices for the PIN --- hard to

guess on the first try
Now, only a few dozen possible English words ---

easy to guess on first try!

