
 Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

 PKI
 Key Establishment

X.509 Authentication Service

 Internet standard (1988 onward)
Specifies certificate format

• X.509 certificates are used in IPSec and SSL/TLS
Specifies certificate directory service

• For retrieving other users’ CA-certified public keys
Specifies a set of authentication protocols

• For proving identity using public-key signatures
Does not specify crypto algorithms

• Can use it with any digital signature scheme and hash
function, but hashing is required before signing

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s private key has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit
card numbers

• Can issue a “delta CRL” containing only updates

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message))

Encrypt, then sign
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control (for

next slide: assume one password for whole system)
Does this work?

Attack on X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

 Receiving encrypted password under signature does not
mean that the sender actually knows the password!

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password)),

 (TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password))

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything

Mafia-in-the-Middle Attack [from Anderson’s book]

customer

Members only

site

Mafia site

Item 123

Bank

Buy 10
gold coins

Sign ‘X’

Prove your
membership
by signing ‘X’

sigK(x)

PRIVATE
KEY K

sigK(x)

One key recommendation: Don’t use same public key / secret key
pair for multiple applications. (Or make sure messages have different
formats across applications.)

Secure Sessions

Secure sessions are among the most important
applications in network security
• Enable us to talk securely on an insecure network

Goal: secure bi-directional communication channel
between two parties
• The channel must provide confidentiality

– Third party cannot read messages on the channel

• The channel must provide authentication
– Each party must be sure who the other party is

• Other desirable properties: integrity, protection against
denial of service, anonymity against eavesdroppers

Key Establishment Protocols

Common implementation of secure sessions:
• Establish a secret key known only to two parties
• Then use block ciphers for confidentiality, HMAC for

authentication, and so on
Challenge: how to establish a secret key

• Using only public information?
• Even if the two parties share a long-term secret, a fresh

key should be created for each session
– Long-term secrets are valuable; want to use them as sparingly as

possible to limit exposure and the damage if the key is
compromised

– (Background: For N parties, there are N choose 2 = N*(N-1)/2
pairs of parties.)

Key Establishment Techniques

Use a trusted key distribution center (KDC)
• Every party shares a pairwise secret key with KDC
• KDC creates a new random session key and then

distributes it, encrypted under the pairwise keys
– Example: Kerberos

Use public-key cryptography
• Diffie-Hellman authenticated with signatures

– Example: IKE (Internet Key Exchange)

• One party creates a random key, sends it encrypted under
the other party’s public key
– Example: TLS (Transport Layer Security)

Early Version of SSL (Simplified)

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB(“Alice”, sigAlice(NB))

fresh session key

encryptKAB(NB)

fresh random number

 Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows her

private key… Alice must have signed NB… NB is fresh and random
and I sent it encrypted under KAB… Alice could have learned NB only
if she knows KAB… She must be the person who sent me KAB in the
first message...

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC
(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

encryptKCB
(“Alice”, sigAlice(NB))

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Denning-Sacco Protocol

Alice Bob

“I’m Alice”, certAlice, certBob,

encryptPublicKey(Bob)(sigAlice(TimeAlice, KAB),

 (TimeAlice, KAB))

Goal: establish a new shared key KAB with the help
of a trusted certificate service

Certificate server
“Alice”, “Bob”

certAlice, certBob

“I’m Alice”, certAlice, certBob,

encryptPublicKey(Bob)(sigAlice(TimeAlice, KAC),

 (TimeAlice, KAC))

Attack on Denning-Sacco

Alice Bob
(with an evil side)

Alice’s signature is insufficiently explicit
• Does not say to whom and why it was sent

Alice’s signature can be used to impersonate her

Nothing in this
signature says that it

was sent to Bob!

Charlie

“I’m Alice”, certAlice,

certCharlie,

encryptPublicKey(Charlie)(

 sigAlice(TimeAlice, KAC),

 (TimeAlice, KAC))

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, want to talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice(N1,“Bob”,KAB, EncryptKBob(KAB,“Alice”))

ticket

ticket, EncryptKAB(N2)

EncryptKAB(N2-1, N3)

EncryptKAB(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

Reflection Attack

Bob

EncryptKAB
(N2-1, N3)

Suppose symmetric encryption is in ECB/CBC mode…
• (Easier to see with ECB mode, so assume that)

Can’t decrypt, but in ECB mode can extract EncryptKAB
(N3)

Open a new session with Bob…

Alice’s ticket, EncryptKAB
(N3)

EncryptKAB
(N3-1, N4)Extract EncryptKAB

(N3-1)

Now successfully authenticate in first session…

EncryptKAB
(N3-1)

Alice’s ticket, EncryptKAB
(N2)

Replay an old message from Alice

Private-Key Needham-Schroeder

Alice Bob

KDC
(knows secret keys KAlice and KBob)N1, “I’m Alice, wanna talk to Bob”

Creates fresh random
session key KAB

EncryptKAlice(N1,“Bob”,KAB, EncryptKBob(KAB,“Alice”))

ticket

ticket, EncryptKAB(N2)

EncryptKAB(N2-1, N3)

EncryptKAB(N3-1)

Fresh, random
nonce

Another nonce

Yet another nonce

Another issue: If learn KAB after session completes,
then can re-use. (Solution: timestamps, nonces.)

Public-Key Needham-Schroeder

Alice Bob

 EncryptPublicKey(Bob)(“Alice”, NA)

EncryptPublicKey(Alice)(NA, NB)

EncryptPublicKey(Bob)(NB)

Alice’s nonce

Bob’s nonce

Create new key from NA and NB, e.g., NA⊕NB

Alice’s reasoning:
• The only person who could know NA
 is the person who decrypted 1st message
• Only Bob can decrypt message encrypted with
 Bob’s public key
• Therefore, Bob is on the other end of the line
 Bob is authenticated!

Bob’s reasoning:
• The only way to learn NB is
 to decrypt 2nd message
• Only Alice can decrypt 2nd message
• Therefore, Alice is on the other end

Alice is authenticated!

EncryptPublicKey(Bob)(“Alice”, NA)

Evil Bob tricks honest Alice
into revealing Charlie’s
secret Nc (and already knew NA)

Charlie is convinced that he is talking to Alice!

[published by Gavin Lowe]

Attack on Needham-Schroeder

Alice
Bob

Evil Bob pretends
that he is Alice

Charlie

EncryptPublicKey(Charlie)

 (“Alice”, NA)

EncryptPublicKey(Alice)(NA, NC)

EncryptPublicKey(Bob)(NC)

Bob can’t decrypt this message,
but he can replay it to Alice

EncryptPublicKey(Alice)(NA, NC)

Lessons of Needham-Schroeder

This is yet another example of design challenges
• Alice is correct that Bob must have decrypted

EncryptPublicKey(Bob)(“Alice”, NA), but this does not mean that
EncryptPublicKey(Alice)(NA, NB) came from Bob

 It is important to realize limitations of protocols
• The attack requires that Alice willingly talk to attacker

– Attacker uses a legitimate conversation with Alice to impersonate
Alice to Charlie

