
 Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

 Asymmetric Cryptography

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)
Encryption of m: c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c: cd mod n = (me)d mod n = m

Last Time

On PK encryption

Encrypted message needs to be in interpreted as
an integer less than n
• Reason: Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.

Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!

Last Time

Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

Last Time

OAEP (image from PKCS #1 v2.1)
Last Time

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

RSA Signatures

Public key is (n,e), private key is d
To sign message m: s = md mod n

• Signing and decryption are the same underlying operation
in RSA

• It’s infeasible to compute s on m if you don’t know d

To verify signature s on message m:
 se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify

signatures produced with d (private key)

 In practice, also need padding & hashing
• Standard padding/hashing schemes exist for RSA signatures

Encryption and Signatures

Often people think: Encryption and decryption are
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods

Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract
x (private key) from gx mod p (public key)

DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M

DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q mod
p) mod q

Public key

If they match, signature is valid

Why DSS Verification Works (Skim)

 If (r,s) is a legitimate signature, then
 r = (gk mod p) mod q ; s = k-1⋅(H(M)+x⋅r) mod q

Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

(gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

Verify gH(M)⋅w⋅yr⋅w = r mod p mod q

Security of DSS

Can’t create a valid signature without private key
Given a signature, hard to recover private key
Can’t change or tamper with signed message
 If the same message is signed twice, signatures are

different
• Each signature is based in part on random secret k

Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k,

attacker can recover secret key x and forge any signature
from then on

• Example problem scenario: rebooted VMs; restarted
embedded machines

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

Exponentiation

 How to compute Mx mod N?
 Say, x = 13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M3)2 = M6

• y = y2 * M mod N // y = (M6)2 *M = M12+1 = M13 = Mx

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1,
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1

Timing attacks
 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has

distribution with “small” variance (due to time for final
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has
distribution with “large” variance (due to time for final
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really

small, ...)

 Strategy: Force user to sign large number of messages
M1, M2, Record timings for signing.

 Iteratively learn bits of key by using above property.

