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Goals for Today

 Asymmetric Cryptography



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)
Encryption of m:  c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c:   cd mod n = (me)d mod n = m
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On PK encryption

Encrypted message needs to be in interpreted as 
an integer less than n
• Reason:  Otherwise can’t decrypt.
• Message is very often a symmetric encryption key.



Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!
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Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard
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OAEP (image from PKCS #1 v2.1)
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Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob



RSA Signatures

Public key is (n,e), private key is d
To sign message m:  s = md mod n

• Signing and decryption are the same underlying operation 
in RSA

• It’s infeasible to compute s on m if you don’t know d

To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)

 In practice, also need padding & hashing
• Standard padding/hashing schemes exist for RSA signatures



Encryption and Signatures

Often people think:  Encryption and decryption are 
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods



Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract 
x (private key) from gx mod p (public key)



DSS: Signing a Message (Skim)

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M



DSS: Verifying a Signature (Skim)

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod 
p) mod q

Public key

If they match, signature is valid



Why DSS Verification Works (Skim)

 If (r,s) is a legitimate signature, then 
   r = (gk mod p) mod q  ;  s = k-1⋅(H(M)+x⋅r) mod q

Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

(gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

Verify gH(M)⋅w⋅yr⋅w = r mod p mod q



Security of DSS

Can’t create a valid signature without private key
Given a signature, hard to recover private key
Can’t change or tamper with signed message
 If the same message is signed twice, signatures are 

different
• Each signature is based in part on random secret k

Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k, 

attacker can recover secret key x and forge any signature 
from then on

• Example problem scenario:  rebooted VMs; restarted 
embedded machines



Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before 
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of 
authenticity of public keys
• No need to keep public keys secret, but must be sure that 

Alice’s public key is really her true public key



Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a 

shared secret, then switch to symmetric crypto
– E.g., IPsec, SSL, SSH, ...

Keys are longer
• 1024+ bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven 
assumptions)



Exponentiation

 How to compute Mx mod N?
 Say, x = 13
 Sums of power of 2, x = 8+4+1 = 23+22+20

 Can also write x in binary, e.g., x = 1101
 Can solve by repeated squaring

• y = 1;
• y = y2 * M mod N  // y = M
• y = y2 * M mod N // y = M2 *M = M2+1 = M3

• y = y2 mod N // y = (M3)2 = M6

• y = y2 * M mod N // y = (M6)2 *M = M12+1 = M13 = Mx



i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M2 mod N
2 y = y2 mod N y = y2 * M2 mod N
1 y = y2 mod N y = y2 * M2 mod N X2 secs
0 y = y2 mod N y = y2 * M2 mod N Y2 secs

Timing attacks 

i bi = 0 bi = 1 Comp Meas
3 y = y2 mod N y = y2 * M1 mod N
2 y = y2 mod N y = y2 * M1 mod N
1 y = y2 mod N y = y2 * M1 mod N X1 secs
0 y = y2 mod N y = y2 * M1 mod N Y1 secs

Collect timings for exponentiation with a bunch of messages M1, 
M2, ... (e.g., RSA signing operations with a private exponent)
Assume (inductively) know b3=1, b2=1, guess b1=1



Timing attacks
 If b1 = 1, then set of { Yj - Xj | j in {1,2, ..} } has 

distribution with “small” variance (due to time for final 
step, i=0)
• “Guess” was correct when we computed X1, X2, ...

 If b1 = 0, then set of { Yj - Xj | j in {1,2, ..} } has 
distribution with “large” variance (due to time for final 
step, i=0, and incorrect guess for b1)
• “Guess” was incorrect when we computed X1, X2, ...
• So time computation wrong (Xj computed as large, but really 

small, ...)

 Strategy:  Force user to sign large number of messages 
M1, M2, ....  Record timings for signing.

 Iteratively learn bits of key by using above property.


