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Goals for Today

 Asymmetric Cryptography



Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p



Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: 
   given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
   given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem: 
   given gx and gy, it’s hard to tell the difference 

between gxy mod p and gr mod p where r is random         



Properties of Diffie-Hellman
Assuming DDH problem is hard, Diffie-Hellman 

protocol is a secure key establishment protocol against 
passive attackers
• Eavesdropper can’t tell the difference between established 

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide 
authentication



Properties of Diffie-Hellman
DDH:  not true for integers mod p, but true for other 

groups
 DL problem in p can be broken down into DL problems for 

subgroups, if factorization of p-1 is known.
 Common recommendation:
• Choose p = 2q+1 where q is also a large prime.
• Pick a g that generates a subgroup of order q in Zp*

• (OK to not know all the details of why for this course.)

• Hash output of DH key exchange to get the key



Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p, q are large prime numbers, p=2q+1, g a generator for 
the subgroup of order q
– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gy)x)=H(gxy) mod p Compute k=H((gx)y)=H(gxy) mod p



Requirements for Public-Key Encryption

Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK 

given only public key PK

Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M



Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number 
of integers in the [1,n] interval that are relatively 
prime to n
• Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1

Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p



RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)
Encryption of m:  c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c:   cd mod n = (me)d mod n = m



Why RSA Decryption Works
e⋅d=1 mod ϕ(n)
Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

Since p and q are distinct primes and p⋅q=n, 

   med=m mod n



Why Is RSA Secure?

RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by 
taking eth root of c

• There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but 
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n



Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!



Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard



OAEP (image from PKCS #1 v2.1)


