
Web Security
+

 Asymmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

Web security
 Asymmetric Cryptography

DNS Rebinding

JavaScript same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port

But can an attacker change the server?
• Yes! If an attacker can control DNS (Domain Name

Service)

DNS: Domain Name Service

Client
Local

DNS recursive
resolver

root & edu
DNS server

www.cs.washington.edu

NS washington.eduwww.cs.w
ashington.edu

washington.edu
DNS serverNS cs.washington.edu

www=IPaddr
cs.washington.edu

DNS server

DNS maps symbolic names to numeric IP addresses
(for example, www.cs.washington.edu ↔ 128.208.3.88)

DNS Caching

DNS responses are cached
• Quick response for repeated translations
• Other queries may reuse some parts of lookup

– NS records for domains

DNS negative queries are cached
• Don’t have to repeat past mistakes

– For example, misspellings

Cached data periodically times out
• Lifetime (TTL) of data controlled by owner of data
• TTL passed with every record

Cached Lookup Example

Client
Local

DNS recursive
resolver

root & edu
DNS server

washington.edu
DNS server

cs.washington.edu
DNS server

ftp.cs.washington.edu

ftp=IPaddr

ftp.cs.washington.edu

DNS Vulnerabilities

DNS host-address mappings are not authenticated
DNS implementations have vulnerabilities

• Reverse query buffer overrun in old releases of BIND
– Gain root access, abort DNS service…

• MS DNS for NT 4.0 crashes on chargen stream
– telnet ntbox 19 | telnet ntbox 53

Denial of service is a risk
• If can’t use DNS ... can’t use the “Internet”

Reverse DNS Spoofing

Trusted access is often based on host names
• E.g., permit all hosts in .rhosts to run remote shell

Network requests such as rsh or rlogin arrive from
numeric source addresses
• System performs reverse DNS lookup to determine

requester’s host name and checks if it’s in .rhosts

 If attacker can spoof the answer to reverse DNS
query, he can fool target machine into thinking that
request comes from an authorized host
• No authentication for DNS responses and typically no

double-checking (numeric → symbolic → numeric)

Other DNS Risks

DNS cache poisoning
• False IP with a high time-to-live will stay in the cache of

the DNS server for a long time
• Basis of pharming

Spoofed ICANN registration and domain hijacking
• Authentication of domain transfers based on email addr
• Aug ’04: teenager hijacks eBay’s German site
• Jan ’05: hijacking of panix.com (oldest ISP in NYC)

– "The ownership of panix.com was moved to a company in Australia, the actual DNS
records were moved to a company in the United Kingdom, and Panix.com's mail has been
redirected to yet another company in Canada."

Misconfiguration and human error

JavaScript/DNS Intranet attack (I)

Consider a Web server intra.good.net
• IP: 10.0.0.7, inaccessible outside good.net network
• Hosts sensitive CGI applications

Attacker at evil.org gets good.net user to browse
www.evil.org

Places Javascript on www.evil.org that accesses
sensitive application on intra.good.net
• This doesn’t work because Javascript is subject to

“same-origin” policy
• … but the attacker controls evil.org DNS

JavaScript/DNS Intranet attack (II)

good.net
browser Evil.org

DNS

Lookup www.evil.org

222.33.44.55

Evil.org
Web

GET /, host www.evil.org

Response

Evil.org
DNS

Lookup www.evil.org

10.0.0.7

Web

POST /cgi/app, host www.evil.org

Response

– short ttl

Intra.good.net
10.0.0.7– compromise!

General issue: Inadequate Input
Validation

http://victim.com/copy.php?name=username
copy.php includes
 system(“cp temp.dat $name.dat”)
User calls
 http://victim.com/copy.php?name=“a; rm *”
copy.php executes
 system(“cp temp.dat a; rm *”);

Supplied by the user!

User Data in SQL Queries

set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ” & form(“user”) & “ ′ AND
 password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail
(Notation approximate, to focus on key issues)

Only true if the result of SQL
query is not empty, i.e., user/pwd
is in the database

SQL Injection

User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

This returns the entire database!
UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

It Gets Better (or Worse?)

User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
Creates an account for badguy on DB server

Uninitialized Inputs

/* php-files/lostpassword.php */
for ($i=0; $i<=7; $i++)
 $new_pass .= chr(rand(97,122))
…
$result = dbquery(“UPDATE ”.$db_prefix.“users
 SET user_password=md5(‘$new_pass’)
 WHERE user_id=‘”.$data[‘user_id’].“ ’ ”);

In normal execution, this becomes
UPDATE users SET user_password=md5(‘???????’)
WHERE user_id=‘userid’

Creates a password with 7
random characters, assuming
$new_pass is set to NULL

SQL query setting
password in the DB

… with superuser privileges

User’s password is
set to ‘badPwd’

Exploit

User appends this to the URL:
&new_pass=badPwd%27%29%2c
user_level=%27103%27%2cuser_aim=%28%27

SQL query becomes
UPDATE users SET user_password=md5(‘badPwd’)
 user_level=‘103’, user_aim=(‘???????’)
WHERE user_id=‘userid’

This sets $new_pass to
badPwd’), user_level=‘103’, user_aim=(‘

http://xkcd.com/327/

Dangerous Websites
 2006 “Web patrol” study at Microsoft identified 752

unique URLs that could successfully exploit unpatched
Windows XP machines
• Many are interlinked by redirection and controlled by the same

major players

 “But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get into

search engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75 “innocuous”

sites focusing on (1) celebrities, (2) song lyrics, (3) wallpapers, (4)
video game cheats, and (5) wrestling

 Similar study at UW
Now through emails and ads

Public Key Cryptography

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

