
Symmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

 Under the hood: Hash functions and MACs

 CELT -- Confidential course feedback opportunity

Integrity

goodFile

Software manufacturer wants to ensure that the executable file
 is received by users without modification.
It sends out the file to users and publishes its hash in NY Times.
The goal is integrity, not secrecy

Idea: given goodFile and hash(goodFile),
 very hard to find badFile such that hash(goodFile)=hash(badFile)

BigFirm™ User

VIRUS

badFile

The Times
hash(goodFile)

Integrity vs. Secrecy

 Integrity: attacker cannot tamper with message
Encryption does not always guarantee integrity

• Intuition: attacker may able to modify message under
encryption without learning what it is
– One-time pad: given key K, encrypt M as M⊕K

– This guarantees perfect secrecy, but attacker can easily change
unknown M under encryption to M⊕M’ for any M’

– Online auction: halve competitor’s bid without learning its value

• This is recognized by industry standards (e.g., PKCS)
– “RSA encryption is intended primarily to provide confidentiality… It

is not intended to provide integrity” (from RSA Labs Bulletin)

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

 H is a lossy compression function
• Collisions: h(x)=h(x’) for distinct inputs x, x’
• Result of hashing should “look random” (make this precise later)

– Intuition: half of digest bits are “1”; any bit in digest is “1” half the time

 Cryptographic hash function needs a few properties…

message
“digest”

message

One-Way

 Intuition: hash should be hard to invert
• “Preimage resistance”
• Let h(x’)=y∈{0,1}n for a random x’
• Given y, it should be hard to find any x such that h(x)

=y

How hard?
• Brute-force: try every possible x, see if h(x)=y
• SHA-1 (common hash function) has 160-bit output

– Expect to try 2159 inputs before finding one that hashes to y.

Collision Resistance
Should be hard to find distinct x, x’ such that

h(x)=h(x’)
• Brute-force collision search is only O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

Birthday paradox (informal)
• Let t be the number of values x,x’,x’’… we need to look at

before finding the first pair x,x’ s.t. h(x)=h(x’)
• What is probability of collision for each pair x,x’?
• How many pairs would we need to look at before finding

the first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

2n/2

Choose(t,2)=t(t-1)/2 ∼ O(t2)

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

– h is one-way (to invert h, must invert g)
– Collisions for h are easy to find: for any x, h(x0)=h(x1)

Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise

– Collisions for h are hard to find: if y starts with 0, then there are
no collisions, if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are
easy to invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

Given randomly chosen x, hard to find x’ such
that h(x)=h(x’)
• Attacker must find collision for a specific x. By

contrast, to break collision resistance, enough to find
any collision.

• Brute-force attack requires O(2n) time
• AKA second-preimage collision resistance

Weak collision resistance does not imply collision
resistance

Which Property Do We Need?

 UNIX passwords stored as hash(password)
• One-wayness: hard to recover password
• Second-preimage resistance: hard to recover “equivalent”

passwd

 Integrity of software distribution
• Weak collision resistance

• But software images are not really random… maybe need full
collision resistance

 Auction bidding
• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B
• Collision resistance: Alice should not be able to change her mind

to bid B’ such that H(B)=H(B’)

Common Hash Functions
MD5

• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

RIPEMD-160
• 160-bit variant of MD5

SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95
• Also recently broken! (Theoretically -- not practical.)

SHA-256, SHA-512, SHA-224, SHA-384
SHA-3: Forthcoming.

Basic Structure of SHA-1 (Not
Required)

Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

How Strong Is SHA-1?

Every bit of output depends on every bit of input
• Very important property for collision-resistance

Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

Some very recent weaknesses (2005)
• Collisions can be found in 263 ops

Authentication Without Encryption

Integrity and authentication: only someone who knows KEY can
 compute MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

International Criminal Tribunal for
Rwanda
http://www.nytimes.com/2009/01/27/science/

27arch.html?_r=1&ref=science

Credits: Alexei Czeskis, Karl Koscher, Batya Friedman

HMAC

Construct MAC by applying a cryptographic hash
function to message and key
• Could also use encryption instead of hashing, but…
• Hashing is faster than encryption in software
• Library code for hash functions widely available
• Can easily replace one hash function with another
• There used to be US export restrictions on encryption

 Invented by Bellare, Canetti, and Krawczyk (1996)
• HMAC strength established by cryptographic analysis

Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

