CSE 484 (Winter 2010)

Symmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

¢ Under the hood: Symmetric encryption

= N e e Y . A N W bl S e Y _ A N A W R T e e W . %
e PG DG J ¢ SR o N RS D RN S o TN B 2.3 o W

Attack Scenarios for Encryption

@ Ciphertext-Only

¢ Known Plaintext

¢ Chosen Plaintext

® Chosen Ciphertext (and Chosen Plaintext)

® (General advice: Target strongest level of privacy
possible -- even if not clear why -- for extra

“safety”)

Chosen-Plaintext Attack

PIN is encrypted and
transmitted to bank

—
encrypt(key,PIN)

Crook #2 eavesdrops
on the wire and learns

Crook #1 changes

his PIN to a number
of his choice

ciphertext corresponding
to chosen plaintext PIN

.. repeat for any PIN value

Attack Scenarios for Integrity

¢ What do you think these scenarios should be?

One-Time Pad

e s o LT T
—at. SR . &

= 10111101..
3@ —10001111...

ﬁ: 00110010... |

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ® key

10111101...
/7

D

ﬂnoom... - =

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext ® (key @ key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

Advantages of One-Time Pad

L4 - - " - e r e Y
SRR NTN TP IINNE N T

L 8D BNG s W S A S NN S A R b SN

¢ Easy to compute
e Encryption and decryption are the same operation
e Bitwise XOR is very cheap to compute

® As secure as theoretically possible

e Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources
e ...as long as the key sequence is truly random
— True randomness is expensive to obtain in large quantities

e ...as long as each key is same length as plaintext
— But how does the sender communicate the key to receiver?

Disadvantages

X b M e
— = — 2 fnl u NS . &

= 10111101..
3@ —10001111...

ﬁ: 00110010... |

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ® key

10111101...
/7

D

ﬂnoom... -

I—=

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext ® (key @ key) =
plaintext

Disadvantage #1: Keys as long as messages.

Impractical in most scenarios

Still used by intelligence communities

Disadvantages

at af

I—=
7

S ALE A N T e T Y st
a B PO et DT NN S

= 10111101... 0
3P N0001111...

= 00110010... |

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ® key

0
}9111101...
~

®

ﬂnoom... -

I—=

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext ® (key @ key) =
plaintext

Disadvantage #2: No integrity protection

Dlsadvantages

NS 04 WA NS A b IS A AN S S NG A NN S A A b SNE s NN S AT R b ENE s NN S S R b ANE

Dlsadvantage #3: Keys cannot be reused

P1

EEEEE —oooooooo 00000000--
“3$(@—>00110010... C—D
Eﬁ 00110010... 00110010... = [l=g

P2

ey 11111111
3@ 11001101... >@
= - 00110010 00110010... = [=g

Learn relationship between plaintexts:
CleC2 = (PleK)®(P2@K) = (P1leP2)e(KeK) = P1@P2

Reducing Keysize

B VTR bR T AR el RN & e N N AR LA LT T RN S
.] o 200 s WO TR N R Y e WO TR N R Y o WIS

¢ What do we do when we can'’t pre-share huge
keys?
e When OTP is unrealistic

® We use special cryptographic primitives
e Single key can be reused (with some restrictions)
e But no longer provable secure (in the sense of the OTP)

® Examples: Block ciphers, stream ciphers

Background: Permutation

B RN Bl o R ¥ S - 3 W T e e W
& N A WO TR N ORI e >3 S g4 o AN -t IS 5 NN SNBSS M e NS

A WDN =
A WDN R

CODE becomes DCEO

® For N-bit input, N! possible permutations

¢ Idea: split plaintext into blocks; for each block use
secret key to pick a permutation

o Without the key, permutation should “look random”

Block Clphers

el T TN O ST T R P S RN TR T R P S NN T TN R PSR TN

¢ Operates on a single chunk (“block™) of plaintext
o For example, 64 bits for DES, 128 bits for AES
e Same key is reused for each block (can use short keys)

Plaintext

!

block
cipher

Key ——>

I

Block Cipher S ity
(BN 6 MR 2 AN S b BN s RSN L RSO S S SN s RN S NS R S SN 6 N

W TS T B W T R BN TR ¢ W TS T e W RN
S SR PSS NN TR NS SR VST NN

¢ Result should look like a random permutation
e "As if” plaintext bits were randomly shuffled

¢ Only computational guarantee of secrecy

e Not impossible to break, just very expensive
— If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search
e Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

Block Cipher Operation (Simplified)

Block of plaintext

Key

~

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a

</

“random-looking” way
repeat for several rounds to provide diffusion
(spread plaintext bits
S S S S throughout ciphertext)
AR AR AR .
Procedure must be reversible

Block of ciphertext (for decryption)

Feistel Structure (Stallings Fig 2.2)

Plaintext (2w hits)

Ly bits v wbits R,

®
r
]
[)

DES

(BNE s N S SO R b SNE 0 NS ARG R S NG s AR S RSO R S NG e RS NSO R S BN e R S NSO R e AN

® Feistel structure

e “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

o After 3 random rounds, ciphertext indistinguishable from
a random permutation if internal F function is a
pseudorandom function (Luby & Rackoff)

¢ DES: Data Encryption Standard
o Feistel structure
e Invented by IBM, issued as federal standard in 1977
e 64-bit blocks, 56-bit key + 8 bits for parity

DES and 56 bit keys (Stallings Tab 2.2)

¢ 56 bit keys are quite short

Number of Alternative Time required at 10¢
Key Size (bits) Keys Time required at 1 encryption/us encryptions/us
19 22 =43 = 1P 231 ys = 35.8 minutes 2.15 milliseconds
56 256 =72 % 1016 255 us = 1142 years 1001 hours
128 2128 =34 x 1038 2127 g = 5.4 x 10?* years 5.4 x 1018 years
168 2168 =37 x 1050 2167 yg = 5.9 » 1035 years 5.9 » 1030 years
e 26! = 4 x 1026 2 x 1026 ys = 6.4 x 1012 years 6.4 x 10 years
{permutation)

€ 1999: EFF DES Crack + distibuted machines
e < 24 hours to find DES key

¢ DES ---> 3DES
e 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

Advanced Encryption Standard (AES)

® New federal standard as of 2001
¢ Based on the Rijndael algorithm
¢ 128-bit blocks, keys can be 128, 192 or 256 bits

¢ Unlike DES, does not use Feistel structure
e The entire block is processed during each round

¢ Design uses some very hice mathematics

BaS|c Structure of Rijndael

SO R S SN B MRS NS R b BN S RS ENE s RS NSO R S NS s AR S NSO R b NG

| o
OO0 128-bit plaintext 128-bit key

LIDIOIO (arranged as 4x4 array of 8-bit bytes)

é

byte substitution

shift array rows
(15t unchanged, 2" left by 1, 3" left by 2, 4% left by 3) A 4

Expand key

Shift rows

«—
|

mix 4 bytes in each column
(each new byte depends on all bytes in old column)

é_)(add key for this round

| repeat 10 tlmes

Mix columns

Encryptmg a Large Message

PR o~ i - A T s

-

OSo' “we ve go'tf a good Bl'ock C|pher but ouk“plamtext
is larger than 128-bit block size

® Electronic Code Book (ECB) mode

e Split plaintext into blocks, encrypt each
one separately using the block cipher

@ Cipher Block Chaining (CBC) mode

e Split plaintext into blocks, XOR each block with the result
of encrypting previous blocks

¢ Counter (CTR) mode

e Use block cipher to generate keystream, like a stream
cipher

..

—

ECB Mode

block
cipher

block
cipher

plaintext

block
cipher

block
cipher

block
cipher

R
KRR K

SRS
SR
SRR

SRS
SRS
SRR
SRS
SRR
SRR
SRS
SRR
SRS
SR
SRS
RS
SRR

SRR
KNI
LN

KNI
KRN

KNI
KRR

KA
KRN

KA
KRNI

e

KR

S

SRR
KX
KRNI
KNI
KRN
KNI
KRR HH A
KA
oy KN
KA
KN AHNHIHHH
SRR
S

R
KRR R K

RS
S
SRR
S
SRR
S
T

A
SR
SRR

o
0’
KA
NN
e

Identical blocks of plaintext produce identical

blocks of ciphertext
©® No integrity checks

can mix and match blocks

CBC Mode Encryptlon

e MR S A

plaintext

Initialization ‘l‘ ‘l‘ ‘l‘ i‘
vector —P P >@ NS

(random) v v v v

block block block block
cipher cipher cipher cipher

\ 4 \ 4 \ 4 i

% W3 CI p h e rt EXt % s &

¢ Identical blocks of plaintext encrypted differently

¢ Last cipherblock depends on entire plaintext
o Still does not guarantee integrity

S A b SNE s NN S A L ANE 6 NN S S b NS

CBC Mode: Decryption

(BNE s N S SO R b SNE 0 NS ARG R S NG s AR S RSO R S NG e RS NSO R S BN e R S NSO R e AN

plaintext

Initialization T T T T
vector - C‘P —®) —>@ —>F

A Y X x

decrypt || | decrypt

ECB vs. CBC

s s s e [Picture due to Bart Preneel]

AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

Information Leakage in ECB Mode

T T I e D T N T T B e O T T T B S N T TG L D A TR [W| Ki ped ia]

>

. Encrypt in ECB mode

CBC and Electronic Voting

(BNE s N S SO R b SNE 0 NS ARG R S NG s AR S RSO R S NG e RS NSO R S BN e R S NSO R e AN
11

Initialization 5 ,@
vector I I @ |

(supposed to ! —
be random)

- . ciphertext --

Found in the source code for Diebold voting machines:

plaintext

DesCBCEncrypt ((des_c block*) tmp, (des c block*)record.m Data,
totalSize, DESKEY, NULL, DES_ENCRYPT)

CTR Mode: Encryption

N T T R B o e W T e T R B e W T I S T R P S RN T S T R WS RN TS T AR VTS NN

Initial ctr
(random)

ctr ctr+1 ctr+2 ctr+3

| | ! |
block block block block
cipher cipher cipher cipher

! | v !

ptb@® |ptp@® [ptp® [ptp@®

|

¢ Identical blocks of plaintext encrypted differently
4 Still does not guarantee integrity
® Fragile if ctr repeats

CTR Mode: Decryption

NSRRI

B

-
",

O

"]
4
by |
3]
5
M
11
¢
M
1]
e
]
N

S R INE S I R b SNE A AN

Initial ctr——> ctr+1

A

block
cipher

