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Goals for Today

 Under the hood:  Symmetric encryption



Attack Scenarios for Encryption

Ciphertext-Only
Known Plaintext
Chosen Plaintext
Chosen Ciphertext (and Chosen Plaintext)

(General advice:  Target strongest level of privacy 
possible -- even if not clear why -- for extra 
“safety”)



Chosen-Plaintext Attack

Crook #1 changes
his PIN to a number
of his choice

encrypt(key,PIN)

PIN is encrypted and
transmitted to bank

Crook #2 eavesdrops
on the wire and learns
ciphertext corresponding
to chosen plaintext PIN

… repeat for any PIN value



Attack Scenarios for Integrity

What do you think these scenarios should be?



One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Cipher achieves perfect secrecy if and only if 
there are as many possible keys as possible plaintexts, and
every key is equally likely   (Claude Shannon)



Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely, 

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?



Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #1:  Keys as long as messages.
Impractical in most scenarios 
Still used by intelligence communities



Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

   10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key = 
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext 

Disadvantage #2:  No integrity protection

0

0



Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

   00000000…

Disadvantage #3:  Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

   11111111…

P1

P2

C1

C2

Learn relationship between plaintexts: 
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2



Reducing Keysize 

What do we do when we can’t pre-share huge 
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples:  Block ciphers, stream ciphers



Background:  Permutation

1
2
3

4

1
2
3

4
CODE becomes DCEO

For N-bit input, N! possible permutations
 Idea: split plaintext into blocks; for each block use 

secret key to pick a permutation
• Without the key, permutation should “look random”



Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey



Block Cipher Security

Result should look like a random permutation
• “As if” plaintext bits were randomly shuffled

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then 
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value 
and/or useful lifetime of protected information



Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms 
its input bits in a 
“random-looking” way 
to provide diffusion 
(spread plaintext bits 
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible 

(for decryption)



Feistel Structure (Stallings Fig 2.2)

⊕

⊕



DES
Feistel structure

• “Ladder” structure: split input in half, put one half 
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from 
a random permutation if internal F function is a 
pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity



DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999:  EFF DES Crack + distibuted machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)



Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics



Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows 
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column 
(each new byte depends on all bytes in old column)



Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext 

is larger than 128-bit block size
Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each                      
one separately using the block cipher

Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result 

of encrypting previous blocks
Counter (CTR) mode

• Use block cipher to generate keystream, like a stream 
cipher

 ...



ECB Mode

 Identical blocks of plaintext produce identical 
blocks of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher



CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕



CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

⊕Initialization
vector ⊕ ⊕ ⊕



ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]



Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode



CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

⊕ ⊕ ⊕ ⊕

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,
             totalSize, DESKEY, NULL, DES_ENCRYPT)



CTR Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Still does not guarantee integrity
 Fragile if ctr repeats

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt



ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt


