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Symmetric Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...




Goals for Today

¢ Under the hood: Symmetric encryption
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Attack Scenarios for Encryption

@ Ciphertext-Only

¢ Known Plaintext

¢ Chosen Plaintext

® Chosen Ciphertext (and Chosen Plaintext)

® (General advice: Target strongest level of privacy
possible -- even if not clear why -- for extra

“safety”)




Chosen-Plaintext Attack

PIN is encrypted and
transmitted to bank

—
encrypt(key,PIN)

Crook #2 eavesdrops
on the wire and learns

Crook #1 changes

his PIN to a number
of his choice

ciphertext corresponding
to chosen plaintext PIN

.. repeat for any PIN value




Attack Scenarios for Integrity

¢ What do you think these scenarios should be?




One-Time Pad
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Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ® key
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Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext ® (key @ key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)




Advantages of One-Time Pad
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¢ Easy to compute
e Encryption and decryption are the same operation
e Bitwise XOR is very cheap to compute

® As secure as theoretically possible

e Given a ciphertext, all plaintexts are equally likely,
regardless of attacker’s computational resources
e ...as long as the key sequence is truly random
— True randomness is expensive to obtain in large quantities

e ...as long as each key is same length as plaintext
— But how does the sender communicate the key to receiver?




Disadvantages
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Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ® key
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Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext ® (key @ key) =
plaintext

Disadvantage #1: Keys as long as messages.

Impractical in most scenarios

Still used by intelligence communities




Disadvantages
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= 10111101... 0
3P N0001111...

= 00110010... |

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ® key

0
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Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ® key =
(plaintext ® key) ® key =
plaintext ® (key @ key) =
plaintext

Disadvantage #2: No integrity protection




Dlsadvantages
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Dlsadvantage #3: Keys cannot be reused

P1

EEEEE —oooooooo 00000000--
“3$(@—>00110010... C—D
Eﬁ 00110010... 00110010... = [l=g

P2

ey 11111111
3@ 11001101... >@
= - 00110010 00110010... = [=g

Learn relationship between plaintexts:
CleC2 = (PleK)®(P2@K) = (P1leP2)e(KeK) = P1@P2




Reducing Keysize
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¢ What do we do when we can'’t pre-share huge
keys?
e When OTP is unrealistic

® We use special cryptographic primitives
e Single key can be reused (with some restrictions)
e But no longer provable secure (in the sense of the OTP)

® Examples: Block ciphers, stream ciphers




Background: Permutation
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CODE becomes DCEO

® For N-bit input, N! possible permutations

¢ Idea: split plaintext into blocks; for each block use
secret key to pick a permutation

o Without the key, permutation should “look random”




Block Clphers
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¢ Operates on a single chunk (“block™) of plaintext
o For example, 64 bits for DES, 128 bits for AES
e Same key is reused for each block (can use short keys)

Plaintext

!

block
cipher

Key ——>

I




Block Cipher S ity
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¢ Result should look like a random permutation
e "As if” plaintext bits were randomly shuffled

¢ Only computational guarantee of secrecy

e Not impossible to break, just very expensive
— If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search
e Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information




Block Cipher Operation (Simplified)

Block of plaintext

Key

~

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a

</

“random-looking” way
repeat for several rounds to provide diffusion
(spread plaintext bits
S S S S throughout ciphertext)
AR AR AR .
Procedure must be reversible

Block of ciphertext (for decryption)




Feistel Structure (Stallings Fig 2.2)

Plaintext (2w hits)
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DES
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® Feistel structure

e “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

o After 3 random rounds, ciphertext indistinguishable from
a random permutation if internal F function is a
pseudorandom function (Luby & Rackoff)

¢ DES: Data Encryption Standard
o Feistel structure
e Invented by IBM, issued as federal standard in 1977
e 64-bit blocks, 56-bit key + 8 bits for parity




DES and 56 bit keys (Stallings Tab 2.2)

¢ 56 bit keys are quite short

Number of Alternative Time required at 10¢
Key Size (bits) Keys Time required at 1 encryption/us encryptions/us
19 22 =43 = 1P 231 ys = 35.8 minutes 2.15 milliseconds
56 256 =72 % 1016 255 us = 1142 years 1001 hours
128 2128 =34 x 1038 2127 g = 5.4 x 10?* years 5.4 x 1018 years
168 2168 =37 x 1050 2167 yg = 5.9 » 1035 years 5.9 » 1030 years
e 26! = 4 x 1026 2 x 1026 ys = 6.4 x 1012 years 6.4 x 10 years
{permutation)

€ 1999: EFF DES Crack + distibuted machines
e < 24 hours to find DES key

¢ DES ---> 3DES
e 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)




Advanced Encryption Standard (AES)

® New federal standard as of 2001
¢ Based on the Rijndael algorithm
¢ 128-bit blocks, keys can be 128, 192 or 256 bits

¢ Unlike DES, does not use Feistel structure
e The entire block is processed during each round

¢ Design uses some very hice mathematics




BaS|c Structure of Rijndael
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| o
OO0 128-bit plaintext 128-bit key

LIDIOIO (arranged as 4x4 array of 8-bit bytes)

é

byte substitution

shift array rows
(15t unchanged, 2" left by 1, 3" left by 2, 4% left by 3) A 4

Expand key

Shift rows

«—
|

mix 4 bytes in each column
(each new byte depends on all bytes in old column)

é_)( add key for this round

| repeat 10 tlmes

Mix columns




Encryptmg a Large Message
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OSo' “we ve go'tf a good Bl'ock C|pher but ouk“plamtext
is larger than 128-bit block size

® Electronic Code Book (ECB) mode

e Split plaintext into blocks, encrypt each
one separately using the block cipher

@ Cipher Block Chaining (CBC) mode

e Split plaintext into blocks, XOR each block with the result
of encrypting previous blocks

¢ Counter (CTR) mode

e Use block cipher to generate keystream, like a stream
cipher

..

—




ECB Mode
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# Identical blocks of plaintext produce identical

blocks of ciphertext
©® No integrity checks

can mix and match blocks




CBC Mode Encryptlon
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plaintext

Initialization ‘l‘ ‘l‘ ‘l‘ i‘
vector —P P >@ NS

(random) v v v v

block block block block
cipher cipher cipher cipher
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¢ Identical blocks of plaintext encrypted differently

¢ Last cipherblock depends on entire plaintext
o Still does not guarantee integrity
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CBC Mode: Decryption
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plaintext

Initialization T T T T
vector - C‘P —®) —>@ —>F

A Y X x

decrypt || | decrypt




ECB vs. CBC

s s s e [ Picture due to Bart Preneel ]

AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)




Information Leakage in ECB Mode
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. Encrypt in ECB mode




CBC and Electronic Voting
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Initialization 5 ,@
vector I I @ |

(supposed to ! —
be random)

- . ciphertext --

Found in the source code for Diebold voting machines:

plaintext

DesCBCEncrypt ((des_c block*) tmp, (des c block*)record.m Data,
totalSize, DESKEY, NULL, DES_ENCRYPT)




CTR Mode: Encryption
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Initial ctr
(random)

ctr ctr+1 ctr+2 ctr+3

| | ! |
block block block block
cipher cipher cipher cipher

! | v !

ptb@®  |ptp@®  [ptp®  [ptp@®

|

¢ Identical blocks of plaintext encrypted differently
4 Still does not guarantee integrity
® Fragile if ctr repeats




CTR Mode: Decryption
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Initial ctr——> ctr+1
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block
cipher




