
Software Security: Attacks,
Defenses, and Design Principles

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2010)

Goals for Today

 Randomness
 Timing Attacks

 Defensive Approaches

Randomness issues

Many applications (especially security ones)
require randomness

 Explicit uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting

machine)
• Shuffle cards (for an online gambling site)

C’s rand() Function
 C has a built-in random function: rand()

unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

 Problem: don’t use rand() for security-critical
applications!
• Given a few sample outputs, you can predict

subsequent ones

Problems in Practice
One institution used (something like) rand() to

generate passwords for new users
• Given your password, you could predict the passwords

of other users

 Kerberos (1988 - 1996)
• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon

Kerberos for authentication
Online gambling websites

• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Big news... CNN, etc..

Other Problems
 Live CDs, diskless clients

• May boot up in same state every time

 Virtual Machines
• Save state: Opportunity for attacker to inspect the

pseudorandom number generator’s state
• Restart: May use same “psuedorandom” value more

than once

Obtaining Pseudorandom Numbers

 For security applications, want “cryptographically
secure pseudorandom numbers”

 Libraries include:
• OpenSSL
• Microsoft’s Crypto API

 Linux:
• /dev/random
• /dev/urandom

 Internally:
• Pool from multiple sources (interrupt timers,

keyboard, ...)
• Physical sources (radioactive decay, ...)

Timing Attacks

 Assume there are no “typical” bugs in the
software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against

Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

 Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
• Total tries: 256*8 = 2048

Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products

Toward Preventing Buffer Overflow

 Use safe programming languages, e.g., Java
• What about legacy C code?

 Static analysis of source code to find overflows
 Black-box testing with long strings
Mark stack as non-executable
 Randomize stack location or encrypt return address

on stack by XORing with random string
• Attacker won’t know what address to use in his or her

string
 Run-time checking of array and buffer bounds

• StackGuard, libsafe, many other tools

Non-Executable Stack

 NX bit for pages in memory
• Modern Intel and AMD processors support
• Modern OS support as well

 Some applications need executable stack
• For example, LISP interpreters

 Does not defend against return-to-libc exploits
• Overwrite return address with the address of an existing

library function (can still be harmful)
…nor against heap and function pointer overflows
…nor changing stack internal variables (auth

flag, ...)

 Embed “canaries” in stack frames and verify their
integrity prior to function return
• Any overflow of local variables will damage the canary

 Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

 Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

buf

Run-Time Checking: StackGuard

ret/IPSaved FPbuf Caller’s stack frame

ret/IPSaved FP Caller’s stack frame0000canary

StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function

return causes a performance penalty
• For example, 8% for Apache Web server

 PointGuard also places canaries next to function
pointers and setjmp buffers
• Worse performance penalty

 StackGuard doesn’t completely solve the problem
(can be defeated)

Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

PointGuard

 Attack: overflow a function pointer so that it points
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will

dereference to a “random” memory address

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

Fuzz Testing

 Generate “random” inputs to program
• Sometimes conforming to input structures (file

formats, etc)

 See if program crashes
• If crashes, found a bug
• Bug may be exploitable

 Surprisingly effective

 Now standard part of development lifecycle

