CSE 484 / CSE M 584 (Winter 2010)

#### **Computer Security and Privacy**

#### Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly Shmatikov, Bennet Yee, and many others for sample slides and materials ...

# **High-level information**

#### Instructor: Tadayoshi Kohno (Yoshi)

- Office: CSE 558
- Office hours: Mondays, 9:30 to 10:20am (right after class, may change)
- Open door policy don't hesitate to stop by!
- TAs: Slava Chernyak (labs), Alexei Czeskis (discussion sections), Miro Enev (homeworks)
  - Office/hours: See website (TBD)
- Course website
  - Assignments, reading materials, ...
- Course email list
  - Announcements
- Course forum
  - Discussion

## Prerequisites (CSE 484)

- Required: Data Structures (CSE 326)
- Required: Machine Org and Assembly (CSE 378)

Assume: Working knowledge of C and assembly

- One of the projects involves writing buffer overflow attacks in C
- You must have detailed understanding of x86 architecture, stack layout, calling conventions, etc.
- Assume: Working knowledge of software engineering tools for Unix environments (gdb, etc)
- Assume: Working knowledge of Java and JavaScript

# Prerequisites (CSE 484)

Strongly recommended: Computer Networks;
 Operating Systems

- Will help provide deeper understanding of security mechanisms and where they fit in the big picture
- Recommended: Complexity Theory; Discrete Math; Algorithms
  - Will help with the more theoretical aspects of this course.

## Prerequisites (CSE 484)

#### Most of all: Eagerness to learn!

- This is a 400 level course.
- I expect you to push yourself to learn as much as possible.
- I expect you to be a strong, independent learner capable of learning new concepts from the lectures, the readings, and on your own.

# Prerequisites (CSE M 584)

#### All the previous prerequisites, plus

- Admission to 5-th year Masters program
- CSE 378 (machine organization and assembly language) and one of CSE 451 / CSE 461 (OS / networking)

# Course Logistics (CSE 484)

- Lectures: Mon, Wed, Fri: 8:30--9:20am;
  Recitations: Thurs: 8:30--9:20am and 9:30--10:20am
- Security is a contact sport!
- Labs (40% of the grade)
  - Labs involve a lot of programming

Exceptional work may be rewarded with extra credit

- Can generally be done in teams of 3 students (see specific lab descriptions for details)
- Homeworks (25% of grade)
- Participation (10% of grade)
- Final (25% of the grade)

No make-up or substitute exams! If you are not sure you will be able to take the exam on the assigned date and time, **do not take this course**!

# Course Logistics (CSE M 584)

- Same as before, but...
- Labs (35% of the grade)
- Homeworks (20% of grade)
- Participation (10% of grade)
- Final (25% of the grade)
- Research readings (10%)
  - Read research papers (1 per week for first 9 weeks)
  - Possibly present one of these papers to the class (depending on enrollment)

### Late Submission Policy

 Late assignments will (generally) be dropped 20% per day.

- Late days will be rounded up
- So an assignment turned in 26 hours late will be downgraded 40%.
- See website for exceptions

Everything is generally due on Friday

### **Participation Grade**

- Regular contributions to class forum
- Participation in class
  - We will have a seating chart ... at least until I learn everyone's names.
  - On Wednesday, please pick a seat that you'd like to have for at least the first part of the quarter

### Small class in a large class

- This class has ~60 enrolled students
- Hard to have 1-on-1 interactions; not very personal

#### Coffee / tea?

- Approximately once a week for the first half of the quarter, let's go as a small group for coffee or tea (~8 or 9 students and me)
- Not required.
- But an opportunity for all of us to get to know each other better, to discuss security, the broader context, thoughts about the course, current movies, ...
- Sign up form will be on the website soon

### **Course Materials**

#### Textbooks:

- Daswani, Kern, Kesavan, "Foundations of Security"
- Handouts (printed, not available online)
- Additional materials linked to from course website
- Attend lectures.
  - Lectures will <u>not</u> follow the textbooks
  - Lectures will focus on "big-picture" principles and ideas
  - Lectures will cover some material that is <u>not</u> in the textbook – and you will be tested on it! (Also make sure to read the blog)

# Other Helpful Books (all online)

Ross Anderson, "Security Engineering" (1st edition)

- Focuses on design principles for secure systems
- Wide range of entertaining examples: banking, nuclear command and control, burglar alarms
- You should all at least look at the Table of Contents for this book.
- Kaashoek and Saltzer, "Principles of Computer System Design"

 Menezes, van Oorschot, and Vanstone, "Handbook of Applied Cryptography"

### Others books, movies, ...

#### Pleasure books include:

- Little Brother by Cory Doctorow
  - Available online here <a href="http://craphound.com/littlebrother/download/">http://craphound.com/littlebrother/download/</a>
  - I highly recommend that everyone reads this
- Cryptonomicon by Neal Stephenson

#### Movies include:

- Hackers
- Sneakers
- Diehard 4
- Wargames

#### Historical texts include:

- The Codebreakers by David Kahn
- The Code Book by Simon Singh

### **Ethics**

- In this class you will learn about how to attack the security and privacy of (computer) systems.
- Knowing how to attack systems is a <u>critical</u> step toward knowing how to protect systems.
- But one must use this knowledge in an ethical manner.
- In order to get a non-zero grade in this course, you must sign and return the "Security and Privacy Code of Ethics" form by the end of class on Friday (Jan 8).

http://www.cs.washington.edu/education/courses/484/10wi/administrivia/ethics.pdf

### Mailing List

Make sure to sign up for the mailing list
 URL for mailing list on course website:

- <u>http://www.cs.washington.edu/education/courses/</u> <u>484/10wi/administrivia/email.html</u>
- Used for announcements

#### Forum

#### We've set up a forum for this course

 <u>https://catalysttools.washington.edu/gopost/board/</u> <u>kohno/14597/</u>

 Please us it to discuss the homeworks and labs and other general class materials

C. L. C. M. C. M. S. L. C. M. Z. C. C.

#### Homeworks

 Tentative schedule online (future dates subject to change based on progress, etc)

General plan (tentative):

- 4 homeworks, approximately once every two weeks
  - Jan 22, Feb 5, Feb 19, March 4
  - First one posted online by Friday
- Due Fridays at 11am.
- Submit to Catalyst system (URL on course page)

http://www.cs.washington.edu/education/ courses/484/10wi/homework/index.html

### Labs

 Tentative schedule online (future dates subject to change based on progress, etc)

General plan (tentative):

- 3 labs
  - Jan 29, Feb 12, March 12
  - First one posted online by next Monday
- Due Fridays at 11am.
- Submit to Catalyst system (URL on course page)
- Groups of three generally allowed (check each project page for details)

http://www.cs.washington.edu/education/ courses/484/10wi/projects/index.html

# Labs (tentative plan)

#### First lab: Software security

• Buffer overflow attacks, double-free exploits, format string exploits, ...

#### Second lab: Web security

- XSS attacks, ...
- Third lab: Botnets (tentative)
  - Build a botnet, command and control, leasing, crypto, ...

### What does "security" mean to you?

# Two key themes of this course

#### How to think about security

- The Security Mindset "new" way to think about systems
- Threat models, security goals, assets, risks, adversaries
- Connection between security, technology, politics, ethics, ...
- The first few lectures, and the forum
  - <u>http://cubist.cs.washington.edu/Security/</u> (last year)
  - http://slashdot.org/

#### Technical aspects of security

- Attack techniques
- Defenses

#### How to think about security

- Several approaches for developing "The Security Mindset" and for exploring the broader contextual issues surrounding computer security
  - Forum: Current event reflections
  - Forum: Security reviews
  - Science fiction prototyping
  - In class discussions
  - Additional participation in forums

#### Forum: Current events and security reviews

- One current event posted by Feb 5 (at 3pm)
- One security review posted by Feb 5 (at 3pm)
- 12 points each
- 1 point extra credit for each week that you are early
- May work in groups of up to 3 people.
  - Working in groups is actually encouraged.
  - Recall: security is a contact sport -- lots of value in discussing security with other people

 Please participate in follow-up discussions on forum

#### Forum: Current events and security reviews

#### Previous courses looked at

- Nike+iPod Sport Kit
- Wireless keyboards
- iPhone
- Zune
- SlingBox
- Nintendo Wii
- Dodgeball
- Netflix
- ...
- Past blog URL: <u>http://cubist.cs.washington.edu/Security/</u>
- Past Security Reviews: <u>http://cubist.cs.washington.edu/Security/category/</u> <u>security-reviews/</u>

#### Science Fiction Prototyping

- Science fiction prototyping: new techniques for exploring potential implications of new technologies
- In many ways, a perfect match for security

#### Key ideas:

- Take new technology
- Place new technology in the context of people, society and explore that with a story
- Use that story to draw lessons about the technologies themselves
- Jan 22: Guest lecture to bootstrap this effort from science fiction author Brian David Johnson
- Tentative plan: Deadlines on Feb 12 and Feb 29.
- Your security reviews and current events articles might give you good ideas for possible technologies to explore

### **Technical Themes**

#### Vulnerabilities of computer systems

 Software problems (buffer overflows); crypto problems; network problems (DoS, worms); people problems (usability, phishing)

#### Defensive technologies

- Protection of information in transit: cryptography, security protocols
- Protection of networked applications: firewalls and intrusion detection
- "Defense in depth"

### What This Course is Not About

<u>Not</u> a comprehensive course on computer security

- Computer security is a <u>broad</u> discipline!
- Impossible to cover everything in one quarter
- So be careful in industry or wherever you go!

<u>Not</u> about all of the latest and greatest attacks

• Read bugtraq or other online sources instead

<u>Not</u> a course on ethical, legal or economic issues

• We will touch on ethical issues, but the topic is huge

<u>Not</u> a course on how to "hack" or "crack" systems

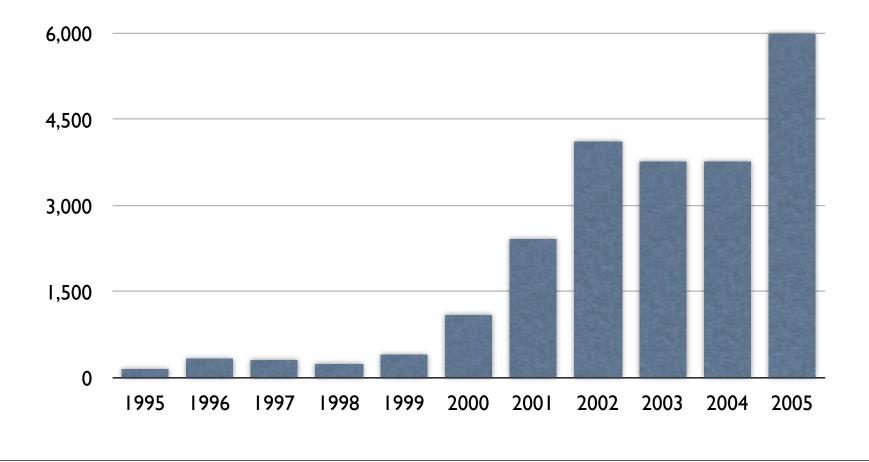
• Yes, we will learn about attacks ... but the ultimate goal is to develop an understanding of attacks so that you can build more secure systems

### What is Computer Security?

Systems may fail for many reasons

- Reliability deals with accidental failures
- Usability deals with problems arising from operating mistakes made by users
- Security deals with intentional failures created by intelligent parties
  - Security is about computing in the presence of an adversary
  - But security, reliability, and usability are all related

### What Drives the Attackers?


#### Adversarial motivations:

- Money, fame, malice, curiosity, politics, terror....
- Fake websites, identity theft, steal money and more
- Control victim's machine, send spam, capture passwords
- Industrial espionage and international politics
- Access copy-protected movies and videos
- Attack on website, extort money
- Wreak havoc, achieve fame and glory

### **Growing Problem**

#### 

Vulnerabilities reported (http://www.cert.org/stats/)



# Challenges: What is "Security?"

#### What does security mean?

- Often the hardest part of building a secure system is figuring out what security means
- What are the assets to protect?
- What are the threats to those assets?
- Who are the adversaries, and what are their resources?

What is the security policy?

Perfect security does <u>not</u> exist!

- Security is not a binary property
- Security is about risk management

Current events, security reviews, and science fiction prototyping all designed to exercise our thinking about these issues

### From Policy to Implementation

 After you've figured out what security means to your application, there are still challenges

- How is the security policy enforced?
- Design bugs
  - Poor use of cryptography
  - Poor sources of randomness

- ...

- Implementation bugs
  - Buffer overflow attacks

- ...

• Is the system <u>usable</u>?

Don't forget the users! They are a critical component!

### Many Participants

Many parties involved

- System developers
- Companies deploying the system
- The end users
- The adversaries (possibly one of the above)
- Different parties have different goals
  - System developers and companies may wish to optimize cost
  - End users may desire security, privacy, and usability
  - But the relationship between these goals is quite complex (will customers choose not to buy the product if it is not secure?)

# Other (Mutually-Related) Issues

- Do consumers actually care about security?
- Security is expensive to implement
- Plenty of legacy software
- Easier to write "insecure" code
- Some languages (like C) are unsafe

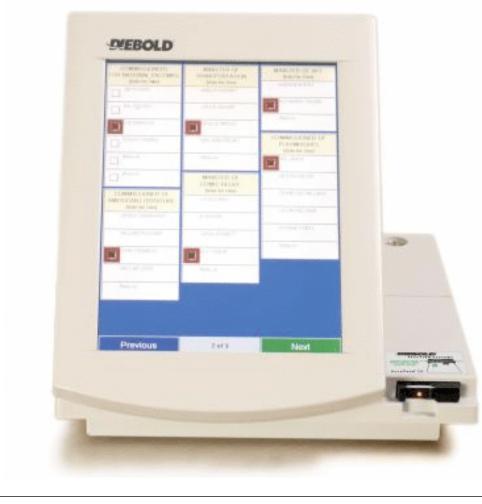
# Approaches to Security

#### Prevention

• Stop an attack

#### Detection

• Detect an ongoing or past attack

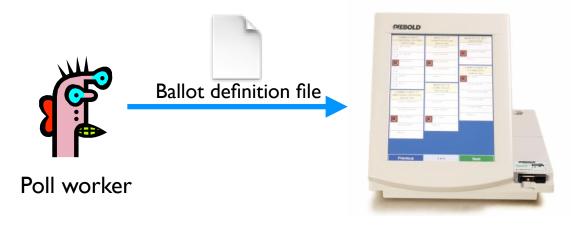

#### Response

• Respond to attacks

 The threat of a response may be enough to deter some attackers

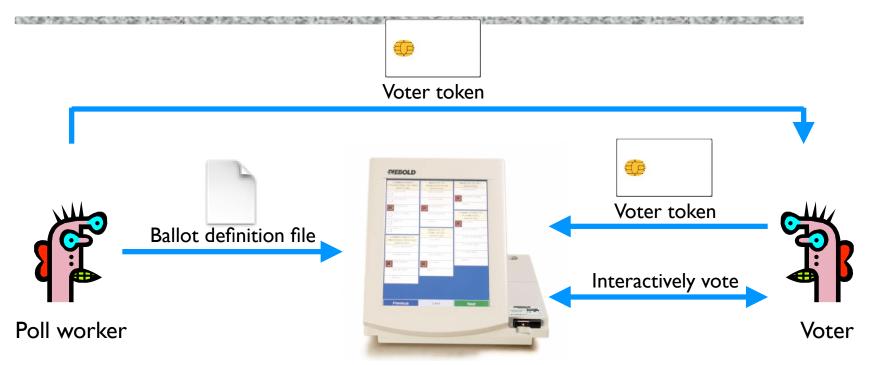
### **Example: Electronic Voting**

Popular replacement to traditional paper ballots



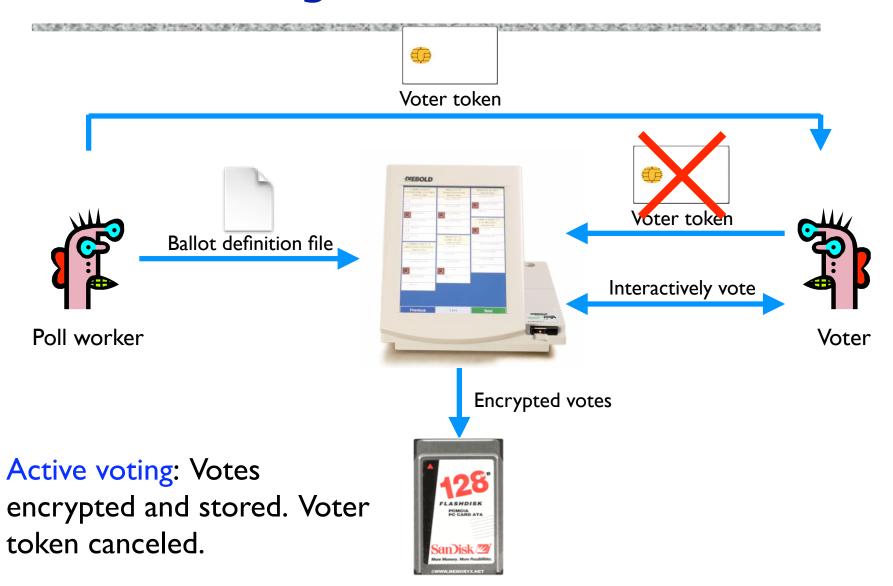




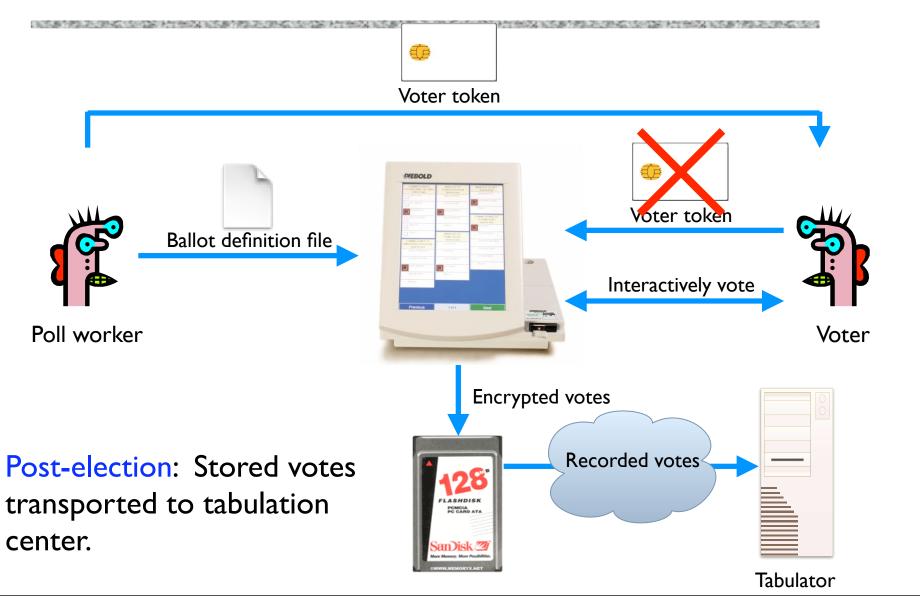




#### **Pre-Election**




Pre-election: Poll workers load "ballot definition files" on voting machine.

### Active Voting




Active voting: Voters obtain single-use tokens from poll workers. Voters use tokens to active machines and vote.

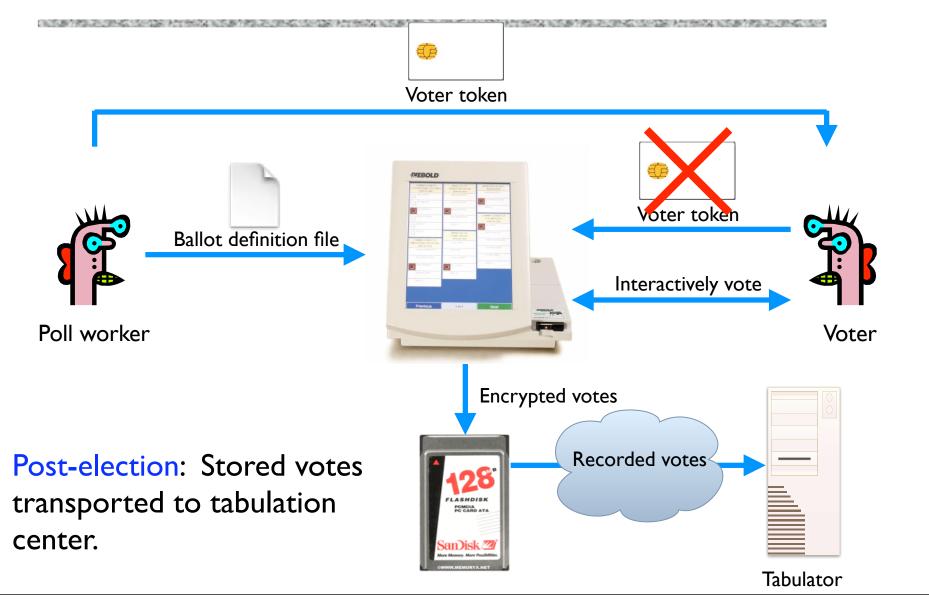
# Active Voting



#### **Post-Election**



## Security and E-Voting (Simplified)


#### Functionality goals:

- Easy to use
- People should be able to cast votes easily, in their own language or with headphones for accessibility

#### Security goals:

- Adversary should not be able to tamper with the election outcome
  - By changing votes
  - By denying voters the right to vote
- Is it OK if an adversary can do the above, assuming you can catch him or her or them?
- Adversary should not be able to figure out how voters vote

### Can You Spot Any Potential Issues?



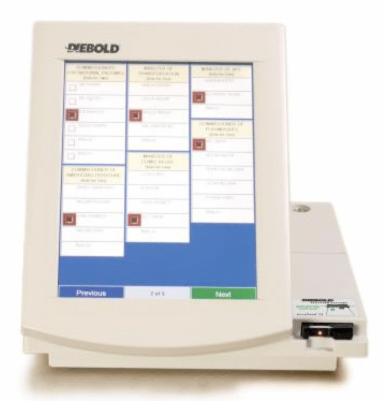
### **Potential Adversaries**

#### Voters

Election officials

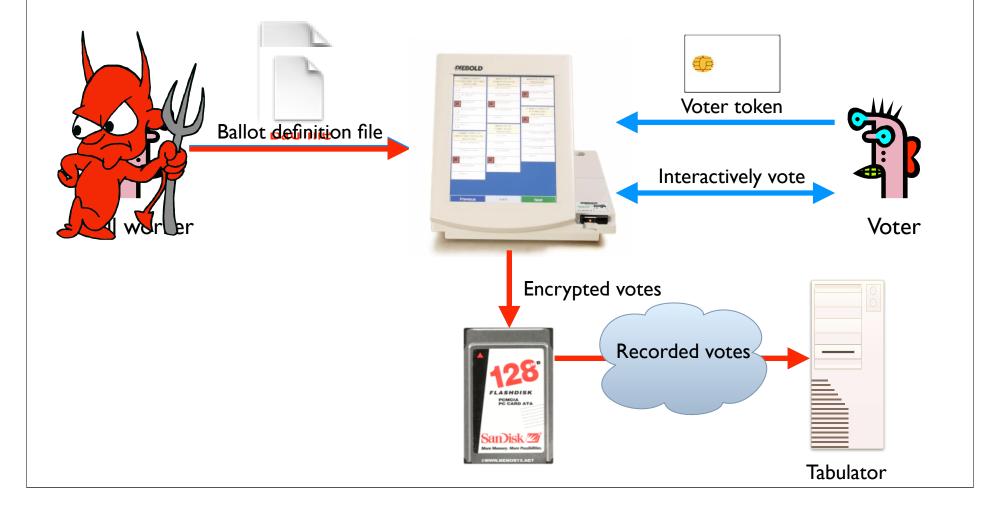
#### Employees of voting machine manufacturer

- Software/hardware engineers
- Maintenance people


#### Other engineers

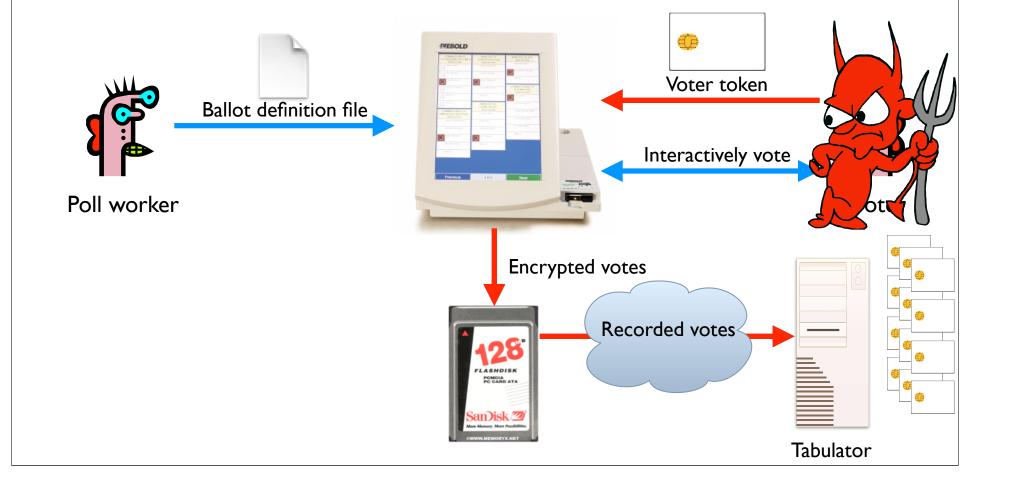
- Makers of hardware
- Makers of underlying software or add-on components
- Makers of compiler

...


Or any combination of the above

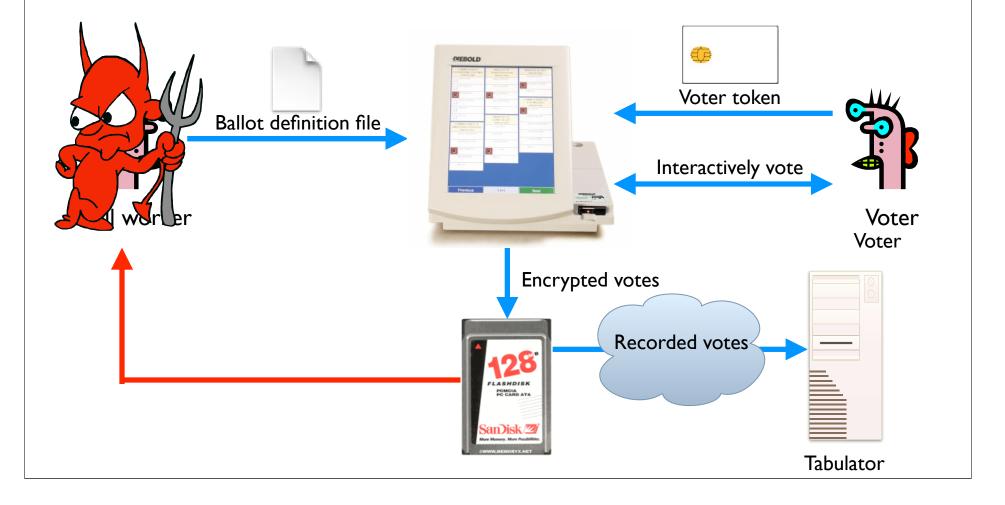
### What Software is Running?




Problem: An adversary (e.g., a poll worker, software developer, or company representative) able to control the software or the underlying hardware could do whatever he or she wanted. Problem: Ballot definition files are not authenticated.

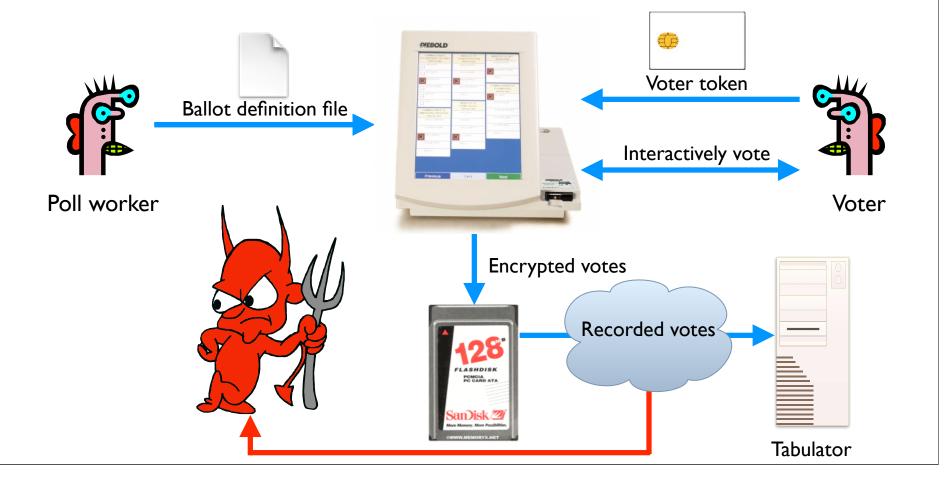
Example attack: A malicious poll worker could modify ballot definition files so that votes cast for "Mickey Mouse" are recorded for "Donald Duck."




**Problem:** Smartcards can perform cryptographic operations. But there is no authentication from voter token to terminal.

Example attack: A regular voter could make his or her own voter token and vote multiple times.




Problem: Encryption key ("F2654hD4") hard-coded into the software since (at least) 1998. Votes stored in the order cast.

Example attack: A poll worker could determine how voters vote.



Problem: When votes transmitted to tabulator over the Internet or a dialup connection, they are decrypted first; the cleartext results are sent the tabulator.

Example attack: A sophisticated outsider could determine how votes vote.



# Security not just for PCs

# **Implantable Medical Devices**