
Ben Greenstein, Damon McCoy, Jeffrey Pang, Tadayoshi
Kohno, Srinivasan Seshan, and David Wetherall

Presented by Victoria Kirst

Improving Wireless Privacy with an 

Identifier-Free Link Layer Protocol



Problem

 Ubiquity of wifi devices increases privacy risks

 Transmissions are broadcasted, so wireless more 
exposed than wired 

 Easy to eavesdrop w/ free software

Use standards like WPA 802.11 to encrypt…



WPA 802.11 Not Sufficient

 Low level identifiers (network names, addresses) used 
to find high-level identifiers (identities)

 Probe requests show networks they're trying to read, 
authentication information, MAC addr, etc. in the clear

 Can link together
 Tracking and Inventorying (sender, receiver identities)

 Profiling (sender, receiver relationships)

802.11 Probe Is Bob’s network here?

802.11 Beacon Bob’s network is here



Solution: Remove all identifiers!

 SlyFi: 802.11-like protocol that encrypts entire packets 
to remove explicitly identifiers

 How to communicate?

 How do I know if I’m the destination?

 How can I announce that I’m here?

 All this can be supported without exposing identity
 Hide entire message contents from third parties
 Prevent third parties from “linking” any two packets



Objective
 When A generates Message to B, he sends:

PrivateMessage = F(A, B, Message)

where F has these security properties:

 Unlinkability: Only A and B can link PrivateMessages
to same sender or receiver.

 Authenticity: B can verify A created PrivateMessage.
 Confidentiality: Only A and B can determine Message.
 Integrity: B can verify Message not modified.
 Efficiency: B can process PrivateMessage fast as 

he can receive them.



Solution Overview



Straw Man: Public Key Mechanism

 Alice signs statement, encrypts w/ Bob's public key

 Uses encryption that does not reveal which key is used, 
so sender/recipient anonymous

 Bob then tries to decrypt all messages he receives

 When successful, check signature and time

 SLOW: Bob can be backlogged trying to decrypt all the 
messages



Straw Man: Public Key Mechanism

Probe “Bob”

Client Service

Key-private encryption
(e.g., ElGamal)

KBob

Check signature:

Try to decrypt

K-1
Bob

KAlice

K-1
AliceSign:

timestamp

???



Straw man: Symmetric Key Protocol

 Alice encrypts statement using symmetric encryption 
(AES), generates MAC 

 Bob verifies MAC in header with his key

 SLOW: Must try all symmetric keys he has

 Can use locality by sorting keys by most-recently-used

 Still slow for messages not intended for Bob
 Especially if Bob has many keys



Straw man: Symmetric Key Protocol

Probe “Bob”

Client Service

Symmetric encryption
(e.g., AES w/ random IV)

Check MAC:

MAC: K’Shared

KShared

K’Shared

timestamp

Try to
decrypt

with each 
shared key

KShared1

KShared2

KShared3
…

???



Approach

11



Tryst and Shroud

 Make a few key simplifying assumptions to speed up 
efficiency

 Tryst: Discovering and binding

 Infrequent: only sent once per association attempt

 Narrow interface: single application, few side-channels

 Linkability at short timescales is usually OK

 Can use temporary unlinkable addresses

 Shroud: Data transport



Tryst: Discovery & Binding

 Based off of Symmetric Key Straw Man

 Alice and Bob generate sequence of unlinkable
addresses based on T0 (time of initial key exchange)

 Ti for every time interval I

 Bob maintains hash table of Addresses(Ti) –> Key; 
table updated every time interval

 Use fast table lookup for key instead of trying all keys



???

Tryst: Discovery & Binding

Probe “Bob”

Client Service

Symmetric encryption
(e.g., AES w/ random IV)

Check MAC:

MAC: K’Shared

KShared

K’Shared

AT

AT

KShared

Lookup AT in a
table to get KShared

timestamp

Try to
decrypt

with each 
shared key

KShared1

KShared2

KShared3
…

AT-1A0 AT

AESK’’Shared(0)

AT+1
… …

AESK’’Shared(T-1) AESK’’Shared(T) AESK’’Shared(T+1)

T = time epoch



Shroud: Data transport
 Tryst assumptions not sufficient for data transport

 New assumptions for data:
 Only sent over established connections
 Expect messages to be delivered, barring message loss

 Similar to Tryst: generate addresses at Ti, but Ti is 
transmission number i instead of time interval

 In authentication messages, exchange random session 
keys for A and B (protected by Tryst)

 Bob maintains table of Addresses(Ti) –> Key; table 
updated every new packet



???

Shroud: Data transport

Data

Client Service

Symmetric encryption
(e.g., AES w/ random IV)

Check MAC:

MAC: K’Shared

KShared

K’Shared

AT

AT

KShared

Lookup AT in a
table to get KShared

timestamp

AT-1A0 AT

AESK’’Shared(0)

AT+1
… …

AESK’’Shared(T-1) AESK’’Shared(T) AESK’’Shared(T+1)

T = transmission #

???



Shroud: Data transport

 On receipt of packet with address AT,
compute next address AT+1

 Handling message loss:
 Compute AT+1, … , AT+k

 Can progress unless k consecutive packets are lost

 Studies show k=50 sufficient for vast majority of cases

 Common case: compute 1 new address per reception, 
except first packet, which requires 49 computations



Evaluation



Evaluation Metrics

 Link setup time
 Time to discover and setup a link

 Lower  shorter wait to deliver data, 
less interruption when roaming

 Key questions:
 Is address computation overhead large?

 Can Tryst filter messages efficiently?



Link Setup Time vs. Background Rate

Tryst has less overhead than WPA



Link Setup Failure vs. Background 

Rate

Tryst filtering is much more efficient than straw men



Evaluation Metrics

 Data throughput
 How fast can link deliver data

 Higher  faster applications

 Key questions:
 What is Shroud’s overhead?

 Can Shroud filter messages efficiently?



Data Throughput vs. Packet Size

Shroud overhead is similar to WPA



Data Throughput vs. Background Rate

Shroud filtering is almost as efficient as 802.11



Improvements and Open Questions

• Known limitations:

• Packet sizes, packet timings, and physical layer might still be 
used to link packets together

• SlyFi can be introduced incrementally because it falls back 
to normal 802.11 if no SlyFi-enabled access point is found

• Introduce security risks in the future if SlyFi were to become 
a more prevalent protocol?


