
Ben Greenstein, Damon McCoy, Jeffrey Pang, Tadayoshi
Kohno, Srinivasan Seshan, and David Wetherall

Presented by Victoria Kirst

Improving Wireless Privacy with an

Identifier-Free Link Layer Protocol

Problem

 Ubiquity of wifi devices increases privacy risks

 Transmissions are broadcasted, so wireless more
exposed than wired

 Easy to eavesdrop w/ free software

Use standards like WPA 802.11 to encrypt…

WPA 802.11 Not Sufficient

 Low level identifiers (network names, addresses) used
to find high-level identifiers (identities)

 Probe requests show networks they're trying to read,
authentication information, MAC addr, etc. in the clear

 Can link together
 Tracking and Inventorying (sender, receiver identities)

 Profiling (sender, receiver relationships)

802.11 Probe Is Bob’s network here?

802.11 Beacon Bob’s network is here

Solution: Remove all identifiers!

 SlyFi: 802.11-like protocol that encrypts entire packets
to remove explicitly identifiers

 How to communicate?

 How do I know if I’m the destination?

 How can I announce that I’m here?

 All this can be supported without exposing identity
 Hide entire message contents from third parties
 Prevent third parties from “linking” any two packets

Objective
 When A generates Message to B, he sends:

PrivateMessage = F(A, B, Message)

where F has these security properties:

 Unlinkability: Only A and B can link PrivateMessages
to same sender or receiver.

 Authenticity: B can verify A created PrivateMessage.
 Confidentiality: Only A and B can determine Message.
 Integrity: B can verify Message not modified.
 Efficiency: B can process PrivateMessage fast as

he can receive them.

Solution Overview

Straw Man: Public Key Mechanism

 Alice signs statement, encrypts w/ Bob's public key

 Uses encryption that does not reveal which key is used,
so sender/recipient anonymous

 Bob then tries to decrypt all messages he receives

 When successful, check signature and time

 SLOW: Bob can be backlogged trying to decrypt all the
messages

Straw Man: Public Key Mechanism

Probe “Bob”

Client Service

Key-private encryption
(e.g., ElGamal)

KBob

Check signature:

Try to decrypt

K-1
Bob

KAlice

K-1
AliceSign:

timestamp

???

Straw man: Symmetric Key Protocol

 Alice encrypts statement using symmetric encryption
(AES), generates MAC

 Bob verifies MAC in header with his key

 SLOW: Must try all symmetric keys he has

 Can use locality by sorting keys by most-recently-used

 Still slow for messages not intended for Bob
 Especially if Bob has many keys

Straw man: Symmetric Key Protocol

Probe “Bob”

Client Service

Symmetric encryption
(e.g., AES w/ random IV)

Check MAC:

MAC: K’Shared

KShared

K’Shared

timestamp

Try to
decrypt

with each
shared key

KShared1

KShared2

KShared3
…

???

Approach

11

Tryst and Shroud

 Make a few key simplifying assumptions to speed up
efficiency

 Tryst: Discovering and binding

 Infrequent: only sent once per association attempt

 Narrow interface: single application, few side-channels

 Linkability at short timescales is usually OK

 Can use temporary unlinkable addresses

 Shroud: Data transport

Tryst: Discovery & Binding

 Based off of Symmetric Key Straw Man

 Alice and Bob generate sequence of unlinkable
addresses based on T0 (time of initial key exchange)

 Ti for every time interval I

 Bob maintains hash table of Addresses(Ti) –> Key;
table updated every time interval

 Use fast table lookup for key instead of trying all keys

???

Tryst: Discovery & Binding

Probe “Bob”

Client Service

Symmetric encryption
(e.g., AES w/ random IV)

Check MAC:

MAC: K’Shared

KShared

K’Shared

AT

AT

KShared

Lookup AT in a
table to get KShared

timestamp

Try to
decrypt

with each
shared key

KShared1

KShared2

KShared3
…

AT-1A0 AT

AESK’’Shared(0)

AT+1
… …

AESK’’Shared(T-1) AESK’’Shared(T) AESK’’Shared(T+1)

T = time epoch

Shroud: Data transport
 Tryst assumptions not sufficient for data transport

 New assumptions for data:
 Only sent over established connections
 Expect messages to be delivered, barring message loss

 Similar to Tryst: generate addresses at Ti, but Ti is
transmission number i instead of time interval

 In authentication messages, exchange random session
keys for A and B (protected by Tryst)

 Bob maintains table of Addresses(Ti) –> Key; table
updated every new packet

???

Shroud: Data transport

Data

Client Service

Symmetric encryption
(e.g., AES w/ random IV)

Check MAC:

MAC: K’Shared

KShared

K’Shared

AT

AT

KShared

Lookup AT in a
table to get KShared

timestamp

AT-1A0 AT

AESK’’Shared(0)

AT+1
… …

AESK’’Shared(T-1) AESK’’Shared(T) AESK’’Shared(T+1)

T = transmission #

???

Shroud: Data transport

 On receipt of packet with address AT,
compute next address AT+1

 Handling message loss:
 Compute AT+1, … , AT+k

 Can progress unless k consecutive packets are lost

 Studies show k=50 sufficient for vast majority of cases

 Common case: compute 1 new address per reception,
except first packet, which requires 49 computations

Evaluation

Evaluation Metrics

 Link setup time
 Time to discover and setup a link

 Lower shorter wait to deliver data,
less interruption when roaming

 Key questions:
 Is address computation overhead large?

 Can Tryst filter messages efficiently?

Link Setup Time vs. Background Rate

Tryst has less overhead than WPA

Link Setup Failure vs. Background

Rate

Tryst filtering is much more efficient than straw men

Evaluation Metrics

 Data throughput
 How fast can link deliver data

 Higher faster applications

 Key questions:
 What is Shroud’s overhead?

 Can Shroud filter messages efficiently?

Data Throughput vs. Packet Size

Shroud overhead is similar to WPA

Data Throughput vs. Background Rate

Shroud filtering is almost as efficient as 802.11

Improvements and Open Questions

• Known limitations:

• Packet sizes, packet timings, and physical layer might still be
used to link packets together

• SlyFi can be introduced incrementally because it falls back
to normal 802.11 if no SlyFi-enabled access point is found

• Introduce security risks in the future if SlyFi were to become
a more prevalent protocol?

