

Administrivia

Final on March 18

• Closed notes; closed electronic devices

Today:

• Human aspects of security (beyond just usability)

Next week:

- Research presentations
 - Valuable practice for presenters
 - Opportunity to hear about emerging directions

Next week

Mon:

- How to 0wn the Internet in Your Spare Time
- Spamalytics: An Emperical Analysis of Spam Marketing Conversion
- Why Phishing Works
- Tor: Second-generation Onion Router

Wed:

- RFIDs and Secret Handshakes: Defending Against Ghost-and-Leech Attacks and Unauthorized Reads
- Pacemakers and Implantable Cardiac Defibrillators: Software Radio Attacks and Zero-power Defenses
- Improving Wireless Privacy with an Identifier-Free Link Layer Protocol

Human Verification

Problem:

- Want to make it hard for spammers to automatically create many free email accounts
- Want to make it difficult for computers to automatically crawl some data repository

Need a method for servers to distinguish between

- Human users
- Machine users
- Approach: CAPTCHA
 - Completely Automated Public Turing Test to Tell Computers and Humans Apart

CAPTCHAs

captcha.net

Idea: "easy" for humans to read words in this picture, but "hard" for computers

Caveats

Usability challenges with visual impairments

Researchers studying how to break CAPTCHAs

 Some attackers don't break CAPTCHAs; they hire or trick others

Social Engineering & Phishing

- Create a bank page advertising an interest rate slightly higher than any real bank; ask users for their credentials to initiate money transfer
 - Some victims provided their bank account numbers to "Flintstone National Bank" of "Bedrock, Colorado"
 - <u>http://www.antiphishing.org/Phishing-dhs-report.pdf</u>
- Exploit social network
 - Spoof an email from a Facebook or MySpace friend
 - In a West Point experiment, 80% of cadets were deceived into following an embedded link regarding their grade report from a fictitious colonel

Experiments at Indiana University

[Jagatic et al.]

- Reconstructed the social network by crawling sites like Facebook, MySpace, LinkedIn and Friendster
- Sent 921 Indiana University students a spoofed email that appeared to come from their friend
- Email redirected to a spoofed site inviting the user to enter his/her secure university credentials
 - Domain name clearly distinct from indiana.edu
- 72% of students entered their real credentials into the spoofed site
 - Males more likely to do this if email is from a female

- Control group: 15 of 94 (16%) entered personal information
- Social group: 349 of 487 (72%) entered personal information
- 70% of responses within first 12 hours
 Adversary wins by gaining users' trust

	To Male	To Female	To Any
From Male	53%	78%	68%
From Female	68%	76%	73%
From Any	65%	77%	72%

Seven Stages of Grief

[according to Elizabeth Kübler-Ross]

- Shock or disbelief
- Denial
- Bargaining
- Guilt
- Anger
- Depression
- Acceptance

Victims' Reactions (1)

[Jagatic et al.]

Anger

- Subjects called the experiment unethical, inappropriate, illegal, unprofessional, fraudulent, self-serving, useless
- They called for the researchers conducting the study to be fired, prosecuted, expelled, or reprimanded

Denial

- No posted comments included an admission that the writer had fallen victim to the attack
- Many posts stated that the poster did not and would never fall for such an attack, and they were speaking on behalf of friends who had been phished

Victims' Reactions (2)

[Jagatic et al.]

Misunderstanding

• Many subjects were convinced that the experimenters hacked into their email accounts. They believed it was the only possible explanation for the spoofed messages.

Underestimation of privacy risks

- Many subjects didn't understand how the researchers obtained information about their friends, and assumed that the researchers accessed their address books
- Others, understanding that the information was mined from social network sites, objected that their privacy had been violated by the researchers who accessed the information that they had posted online

Social aspects

Slides based on Gaw et al's at CHI 2006: <u>http://www.cs.princeton.edu/~sgaw/</u> <u>publications/presentations/CHI2006-sgaw.ppt</u>

Poor Usability Causes Problems

Importance

Why is usability important?

- People are the critical element of any computer system – People are the real reason computers exist in the first place
- Even if it is **possible** for a system to protect against an adversary, people may use the system in other, **less** <u>secure</u> ways

Today

- Challenges with security and usability
- Key design principles
- New trends and directions

Issue #1: Complexities, Lack of Intuition

Real World

Electronic World Too complex, hidden, no intuition.

Issue #1: Complexities, Lack of Intuition

Mismatch between perception of technology and what really happens

- Public keys?
- Signatures?
- Encryption?
- Message integrity?
- Chosen-plaintext attacks?
- Chosen-ciphertext attacks?
- Password management?
- ...

Issue #2: Who's in Charge?

Systems developers should help protect users

- Usable authentication systems
- Red/green lights
- Software applications help users manage their applications
 - P3P for privacy control
 - PwdHash, Keychain for password management
 - Some say: Can we trust software for these tasks?

Issue #3: Hard to Gage Risks

"It won't happen to me!" (Sometimes a reasonable assumption, sometimes not.)

Social Network Users Have Ruined Their Privacy

Posted by from the pu	Schneier on Security A weblog covering security and security technology.
<u>Steve Ke</u> "There	<u> « The Emergence of a Global Infrastructure for Mass Registration and Surveillance Main PDF</u> <u> Redacting Failure »</u>
throwin	May 02, 2005
This fo	Users Disabling Security It's an old stony users disable a security measure because it's appeving allowing an attacker to
opportu	bypass the measure.
	A rape defendant accused in a deadly courthouse rampage was able to enter the chambers of the judge slain in the attack and hold the occupants hostage because the
Miller	door was unlocked and a buzzer entry system was not activated, a sheriff's report
clicki	says.
Stree	Security doesn't work unless the users want it to work. This is true on the personal and national scale, with or without technology.

Issue #4: No Accountability

- Issue #3 is amplified when users are not held accountable for their actions
 - E.g., from employers, service providers, etc.
 - (Not all parties will perceive risks the same way)

Issue #5: Awkward, Annoying, or Difficult

Difficult

• Remembering 50 different, "random" passwords

Awkward

• Lock computer screen every time leave the room

Annoying

• Browser warnings, virus alerts, forgotten passwords, firewalls

Consequence:

Changing user's knowledge may <u>not</u> affect their behavior

Issue #6: Social Issues

Public opinion, self-image

• Only "nerds" or the "super paranoid" follow security guidelines

Unfriendly

• Locking computers suggests distrust of co-workers

Annoying

• Sending encrypted emails that say, "what would you like for lunch?"

Issue #7: Usability Promotes Trust

Well known by con artists, medicine men

Phishing

• More likely to trust professional-looking websites than non-professional-looking ones

Response #1: Education and Training

Education:

• Teaching technical concepts, risks

Training

- Change behavior through
 - Drill
 - Monitoring
 - Feedback
 - Reinforcement
 - Punishment

May be <u>part</u> of the solution - but not <u>the</u> solution

Response #2: Security Should Be Invisible

Security should happen

- Naturally
- By Default
- Without user input or understanding

Recognize and stop bad actions

- Starting to see some invisibility
 - SSL/TLS
 - VPNs
 - Automatic Security Updates

See Dan Simon's slides: <u>http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt</u>

Response #2: Security Should Be Invisible

"Easy" at extremes, or for simple examples

• Don't give everyone access to everything

But hard to generalize

- Leads to things not working for reasons user doesn't understand
- Users will then try to get the system to work, possibly further <u>reducing</u> security

See Dan Simon's slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt

Response #3: "Three-word UI:" "Are You Sure?"

Security should be invisible

- Except when the user tries something dangerous
- In which case a warning is given

But how do users evaluate the warning? Two realistic cases:

- Always heed warning. But see problems / commonality with Response #2
- Always ignore the warning. If so, what's the point?

See Dan Simon's slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt

Response #4: Use Metaphors, Focus on Users

Clear, understandable metaphors:

- Physical analogs; e.g., red-green lights
- User-centered design: Start with user model
- Unified security model across applications
 - User doesn't need to learn many models, one for each application
- Meaningful, intuitive user input
 - Don't assume things on user's behalf
 - Figure out how to ask so that user can answer intelligently

See Dan Simon's slides: http://research.microsoft.com/projects/SWSecInstitute/slides/simon.ppt

Response #5: Least Resistance

- "Match the most comfortable way to do tasks with the least granting of authority"
 - Ka-Ping Yee, <u>Security and Usability</u>

Should be "easy" to comply with security policy

 "Users value and want security and privacy, but they regard them only as secondary to completing the primary tasks"

• Karat et al, <u>Security and Usability</u>

Application: Network in a Box

Establishing cryptographic via IR bootstrap

[Balfanz et al]

ISP Ad Injection

ISP Traffic Modifications

ISPs Inserting Ads Into Your Pages

Posted by <u>CmdrTaco</u> on Sat Jun 23, '07 09:19 AM from the now-thats-just-slimey dept.

TheWoozle writes

on

ret

"Some ISPs are resorting to a new tactic to increase revenue: <u>inserting advertisements into web pages</u> requested by their end users. They use a transparent web proxy (such as <u>this</u>

Comcast Forging Packets To Filter Torrents

en Posted by kdawson on Tue Sep 04, 2007 03:56 PM from the could-be-actionable dept.

An anonymous reader writes

"It's been <u>widely reported</u> by now that Comcast is throttling BitTorrent traffic. What has escaped attention is the fact that Comcast, like the <u>Great Firewall of China</u> uses <u>forged TCP Reset (RST) packets</u> to do the job. While the Chinese government can do what they want, it turns out that Comcast may actually be <u>violating criminal</u> <u>impersonation statutes</u> in states around the country. Simply put, while it's legal to block traffic on your network, forging data to and from customers is a big no-no."

- Reports of web page modifications
 - Comcast forging packets in Bit torrent flows

Is this really happening? How often?

Detecting Page Changes

- Can detect with JavaScript
- * Built a Web Tripwire:
 - Runs in client's browser
 - Finds most changes to HTML
 - Reports to user & server

Attracting Visitors

38

- Wanted view of many clients on many networks
- + Posted to Digg; Slashdotted
 - Visits from over 50,000 unique IP addresses

Really Happening

39

650+ clients saw changes (1.3%)

- Many were client software
- Some occurred in network
- 2.4% (16) of these were advertisement injections allegedly by multiple ISPs

Changes by Malware

40

650+ clients saw changes (1.3%)

- Many were client software
- Some occurred in network
- 2.4% of these were advertisement injections allegedly by multiple ISPs
- 2 cases of malware injection, most likely from other machines on local network