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Intrusion Detection
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Intrusion Detection Systems

Advantage: can recognize new attacks and new 
versions of old attacks

Disadvantages
• High false positive rate
• Must be trained on known good data

– Training is hard because network traffic is very diverse

• Protocols are finite-state machines, but current state of 
a connection is difficult to see from the network

• Definition of “normal” constantly evolves
– What’s the difference between a flash crowd and a denial of 

service attack?
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Intrusion Detection Problems

Lack of training data with real attacks
• But lots of “normal” network traffic, system call data

Data drift
• Statistical methods detect changes in behavior
• Attacker can attack gradually and incrementally

Main characteristics not well understood
• By many measures, attack may be within bounds of 

“normal” range of activities
False identifications are very costly

• Sysadm will spend many hours examining evidence
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Intrusion Detection Errors

False negatives: attack is not detected
• Big problem in signature-based misuse detection

False positives: harmless behavior is classified as an 
attack
• Big problem in statistical anomaly detection

Both types of IDS suffer from both error types
Which is a bigger problem?

• Attacks are fairly rare events
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Suppose two events A and B occur with probability 
Pr(A) and Pr(B), respectively

Let Pr(AB) be probability that both A and B occur
What is the conditional probability that A occurs 

assuming B has occurred?

Conditional Probability

                           Pr(AB)
Pr(A | B) = 

                           Pr(B)
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Suppose mutually exclusive events E1, … ,En 
together cover the entire set of possibilities

Then probability of any event A occurring is
  Pr(A) = Σ1≤i≤n Pr(A | Ei) • Pr(Ei)

– Intuition: since E1, … ,En cover entire

   probability space, whenever A occurs, 
   some event Ei must have occurred

Can rewrite this formula as 

Bayes’ Theorem

                   Pr(A | Ei) • Pr(Ei)
Pr(Ei | A) = 
                           Pr(A)
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1% of traffic is SYN floods; IDS accuracy is 90%
• IDS classifies a SYN flood as attack with prob. 90%, 

classifies a valid connection as attack with prob. 10% 

What is the probability that a connection flagged by 
IDS as a SYN flood is actually valid traffic?

Base-Rate Fallacy

                            Pr(alarm | valid) • Pr(valid)
Pr(valid | alarm) = 
                                           Pr(alarm)

                            Pr(alarm | valid) • Pr(valid)
= 
    Pr(alarm | valid) • Pr(valid) + Pr(alarm | SYN flood) • Pr(SYN flood) 

              0.10 • 0.99
= 
    0.10 • 0.99 + 0.90 • 0.01 

= 92% chance raised alarm
           is false!!!
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Public Key Cryptography
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Basic Problem

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
          2. Bob wants to authenticate himself

public key

public key

Alice Bob
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Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)
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Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p
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Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem: 
   given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
   given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem: 
   given gx and gy, it’s hard to tell the difference 

between gxy mod p and gr mod p where r is random         
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Properties of Diffie-Hellman

Assuming DDH problem is hard, Diffie-Hellman 
protocol is a secure key establishment protocol 
against passive attackers
• Eavesdropper can’t tell the difference between established 

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide 
authentication

DDH:  not true for integers mod p, but true for other 
groups
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Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i  such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gyx))=H(gxy) mod p Compute k=H((gx)y)=H(gxy) mod p
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Requirements for Public-Key Crypto

Key generation: computationally easy to generate a 
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK 

given only public key PK

Encryption: given plaintext M and public key PK, 
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private 
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M
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Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number 
of integers in the [1,n] interval that are relatively 
prime to n
• Two numbers are relatively prime if their greatest 

common divisor (gcd) is 1

Euler’s theorem: 
   if a∈Zn*, then aϕ(n)=1 mod n

Special case: Fermat’s Little Theorem
   if p is prime and gcd(a,p)=1, then ap-1=1 mod p
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RSA Cryptosystem     [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n);  private key = (d,n)
Encryption of m:  c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c:   cd mod n = (me)d mod n = m
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Why RSA Decryption Works
e⋅d=1 mod ϕ(n)
Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

Since p and q are distinct primes and p⋅q=n, 

   med=m mod n
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Why Is RSA Secure?

RSA problem: given n=pq, e such that 
   gcd(e,(p-1)(q-1))=1 and c, find m such that
   me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by 
taking eth root of c

• There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find 
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but 
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n
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Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube 

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to 
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!
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Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create 
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M, 
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to 

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard
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OAEP (image from PKCS #1 v2.1)
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Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
          Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob
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RSA Signatures

Public key is (n,e), private key is d
To sign message m:  s = md mod n

• Signing and decryption are the same underlying 
operation in RSA

• It’s infeasible to compute s on m if you don’t know d

To verify signature s on message m:   
    se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify 

signatures produced with d (private key)

 In practice, also need padding & hashing
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Encryption and Signatures

Often people think:  Encryption and decryption are 
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods
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Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract 
x (private key) from gx mod p (public key)
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DSS: Signing a Message

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M
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DSS: Verifying a Signature

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q  mod 
p) mod q

Public key

If they match, signature is valid
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Why DSS Verification Works

 If (r,s) is a legitimate signature, then 
   r = (gk mod p) mod q  ;  s = k-1⋅(H(M)+x⋅r) mod q

Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

(gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

Verify gH(M)⋅w⋅yr⋅w = r mod p mod q
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Security of DSS

Can’t create a valid signature without private key
Given a signature, hard to recover private key
Can’t change or tamper with signed message
 If the same message is signed twice, signatures are 

different
• Each signature is based in part on random secret k

Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k, 

attacker can recover secret key x and forge any signature 
from then on
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Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before 
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of 
authenticity of public keys
• No need to keep public keys secret, but must be sure that 

Alice’s public key is really her true public key

32



Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a 

shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven 
assumptions)
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Next Homework

You’ll be looking at WinZip’s new AE-2 encryption 
scheme
• Based on “Encrypt-then-MAC” (recall a few classes ago 

--- this is a provably secure mode)
• But things aren’t always that simple

– Many protocols seem secure but actually have problems

• Your job:  Analyze AE-2
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Very popular Windows compression utility.  Also an 
Outlook email plugin.  Over 160 million downloads from 
download.com alone [http://www.winzip.com/
empopp.htm].

WinZipFile Archive.zip

What is WinZip?
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WinZip encryption

WinZip has the ability to encrypt files.  Lots of 
history, but we’ll look at the AE-2 method.

WinZipFile Archive.zip

Passphrase
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Archive.zip

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file without AE-2
(high level)

Compression
Algorithm

File
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Archive.zip

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
Algorithm

File

CRC-32 = 0

compression
type = AE
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Filename

Header

AES-CTR
then

HMAC-SHA1

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase Encrypted

and MACed
Data

Compression
Algorithm

Header

Filename

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Key check val

Salt

Encrypted
and MACed

Data
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