
Networks (missed material)
Public key cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 and CSE M 584 (Winter 2009)

1

Intrusion Detection

2

Intrusion Detection Systems

Advantage: can recognize new attacks and new
versions of old attacks

Disadvantages
• High false positive rate
• Must be trained on known good data

– Training is hard because network traffic is very diverse

• Protocols are finite-state machines, but current state of
a connection is difficult to see from the network

• Definition of “normal” constantly evolves
– What’s the difference between a flash crowd and a denial of

service attack?

3

Intrusion Detection Problems

Lack of training data with real attacks
• But lots of “normal” network traffic, system call data

Data drift
• Statistical methods detect changes in behavior
• Attacker can attack gradually and incrementally

Main characteristics not well understood
• By many measures, attack may be within bounds of

“normal” range of activities
False identifications are very costly

• Sysadm will spend many hours examining evidence

4

Intrusion Detection Errors

False negatives: attack is not detected
• Big problem in signature-based misuse detection

False positives: harmless behavior is classified as an
attack
• Big problem in statistical anomaly detection

Both types of IDS suffer from both error types
Which is a bigger problem?

• Attacks are fairly rare events

5

Suppose two events A and B occur with probability
Pr(A) and Pr(B), respectively

Let Pr(AB) be probability that both A and B occur
What is the conditional probability that A occurs

assuming B has occurred?

Conditional Probability

 Pr(AB)
Pr(A | B) =

 Pr(B)

6

Suppose mutually exclusive events E1, … ,En
together cover the entire set of possibilities

Then probability of any event A occurring is
 Pr(A) = Σ1≤i≤n Pr(A | Ei) • Pr(Ei)

– Intuition: since E1, … ,En cover entire

 probability space, whenever A occurs,
 some event Ei must have occurred

Can rewrite this formula as

Bayes’ Theorem

 Pr(A | Ei) • Pr(Ei)
Pr(Ei | A) =
 Pr(A)

7

1% of traffic is SYN floods; IDS accuracy is 90%
• IDS classifies a SYN flood as attack with prob. 90%,

classifies a valid connection as attack with prob. 10%

What is the probability that a connection flagged by
IDS as a SYN flood is actually valid traffic?

Base-Rate Fallacy

 Pr(alarm | valid) • Pr(valid)
Pr(valid | alarm) =
 Pr(alarm)

 Pr(alarm | valid) • Pr(valid)
=
 Pr(alarm | valid) • Pr(valid) + Pr(alarm | SYN flood) • Pr(SYN flood)

 0.10 • 0.99
=
 0.10 • 0.99 + 0.90 • 0.01

= 92% chance raised alarm
 is false!!!

8

Public Key Cryptography

9

Basic Problem

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goals: 1. Alice wants to send a secret message to Bob
 2. Bob wants to authenticate himself

public key

public key

Alice Bob

10

Applications of Public-Key Crypto

Encryption for confidentiality
• Anyone can encrypt a message

– With symmetric crypto, must know secret key to encrypt

• Only someone who knows private key can decrypt
• Key management is simpler (maybe)

– Secret is stored only at one site: good for open environments

Digital signatures for authentication
• Can “sign” a message with your private key

Session key establishment
• Exchange messages to create a secret session key
• Then switch to symmetric cryptography (why?)

11

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=(gy)x=gxy mod p Compute k=(gx)y=gxy mod p

12

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
 given gx mod p, it’s hard to extract x

• There is no known efficient algorithm for doing this
• This is not enough for Diffie-Hellman to be secure!

Computational Diffie-Hellman (CDH) problem:
 given gx and gy, it’s hard to compute gxy mod p

• … unless you know x or y, in which case it’s easy
Decisional Diffie-Hellman (DDH) problem:
 given gx and gy, it’s hard to tell the difference

between gxy mod p and gr mod p where r is random

13

Properties of Diffie-Hellman

Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers
• Eavesdropper can’t tell the difference between established

key and a random value
• Can use new key for symmetric cryptography

– Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide
authentication

DDH: not true for integers mod p, but true for other
groups

14

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g

• p is a large prime number, g is a generator of Zp*
– Zp*={1, 2 … p-1}; ∀a∈Zp* ∃i such that a=gi mod p

– Modular arithmetic: numbers “wrap around” after they reach p

Alice Bob

Pick secret, random X Pick secret, random Y

gy mod p

gx mod p

Compute k=H((gyx))=H(gxy) mod p Compute k=H((gx)y)=H(gxy) mod p

15

Requirements for Public-Key Crypto

Key generation: computationally easy to generate a
pair (public key PK, private key SK)
• Computationally infeasible to determine private key SK

given only public key PK

Encryption: given plaintext M and public key PK,
easy to compute ciphertext C=EPK(M)

Decryption: given ciphertext C=EPK(M) and private
key SK, easy to compute plaintext M
• Infeasible to compute M from C without SK
• Even infeasible to learn partial information about M
• Trapdoor function: Decrypt(SK,Encrypt(PK,M))=M

16

Some Number Theory Facts

Euler totient function ϕ(n) where n≥1 is the number
of integers in the [1,n] interval that are relatively
prime to n
• Two numbers are relatively prime if their greatest

common divisor (gcd) is 1

Euler’s theorem:
 if a∈Zn*, then aϕ(n)=1 mod n

Special case: Fermat’s Little Theorem
 if p is prime and gcd(a,p)=1, then ap-1=1 mod p

17

RSA Cryptosystem [Rivest, Shamir, Adleman 1977]

Key generation:
• Generate large primes p, q

– Say, 1024 bits each (need primality testing, too)

• Compute n=pq and ϕ(n)=(p-1)(q-1)

• Choose small e, relatively prime to ϕ(n)
– Typically, e=3 or e=216+1=65537 (why?)

• Compute unique d such that ed = 1 mod ϕ(n)

• Public key = (e,n); private key = (d,n)
Encryption of m: c = me mod n

• Modular exponentiation by repeated squaring
Decryption of c: cd mod n = (me)d mod n = m

18

Why RSA Decryption Works
e⋅d=1 mod ϕ(n)
Thus e⋅d=1+k⋅ϕ(n)=1+k(p-1)(q-1) for some k

Let m be any integer in Zn

 If gcd(m,p)=1, then med=m mod p
• By Fermat’s Little Theorem, mp-1=1 mod p
• Raise both sides to the power k(q-1) and multiply by m
• m1+k(p-1)(q-1)=m mod p, thus med=m mod p
• By the same argument, med=m mod q

Since p and q are distinct primes and p⋅q=n,

 med=m mod n
19

Why Is RSA Secure?

RSA problem: given n=pq, e such that
 gcd(e,(p-1)(q-1))=1 and c, find m such that
 me=c mod n

• i.e., recover m from ciphertext c and public key (n,e) by
taking eth root of c

• There is no known efficient algorithm for doing this

Factoring problem: given positive integer n, find
primes p1, …, pk such that n=p1

e1p2
e2…pk

ek

 If factoring is easy, then RSA problem is easy, but
there is no known reduction from factoring to RSA
• It may be possible to break RSA without factoring n

20

Caveats

e =3 is a common exponent
• If m < n1/3, then c = m3 < n and can just take the cube

root of c to recover m
– Even problems if “pad” m in some ways [Hastad]

• Let ci = m3 mod ni - same message is encrypted to
three people
– Adversary can compute m3 mod n1n2n3 (using CRT)
– Then take ordinary cube root to recover m

Don’t use RSA directly for privacy!

21

Integrity in RSA Encryption
Plain RSA does not provide integrity

• Given encryptions of m1 and m2, attacker can create
encryption of m1⋅m2

– (m1
e) ⋅ (m2

e) mod n = (m1⋅m2)e mod n

• Attacker can convert m into mk without decrypting
– (m1

e)k mod n = (mk)e mod n

 In practice, OAEP is used: instead of encrypting M,
encrypt M⊕G(r) ; r⊕H(M⊕G(r))
• r is random and fresh, G and H are hash functions
• Resulting encryption is plaintext-aware: infeasible to

compute a valid encryption without knowing plaintext
– … if hash functions are “good” and RSA problem is hard

22

OAEP (image from PKCS #1 v2.1)

23

Digital Signatures: Basic Idea

?

Given: Everybody knows Bob’s public key
 Only Bob knows the corresponding private key

private key

Goal: Bob sends a “digitally signed” message
1. To compute a signature, must know the private key
2. To verify a signature, enough to know the public key

public key

public key

Alice Bob

24

RSA Signatures

Public key is (n,e), private key is d
To sign message m: s = md mod n

• Signing and decryption are the same underlying
operation in RSA

• It’s infeasible to compute s on m if you don’t know d

To verify signature s on message m:
 se mod n = (md)e mod n = m

• Just like encryption
• Anyone who knows n and e (public key) can verify

signatures produced with d (private key)

 In practice, also need padding & hashing

25

Encryption and Signatures

Often people think: Encryption and decryption are
inverses.

That’s a common view
• True for the RSA primitive (underlying component)

But not one we’ll take
• To really use RSA, we need padding
• And there are many other decryption methods

26

Digital Signature Standard (DSS)

U.S. government standard (1991-94)
• Modification of the ElGamal signature scheme (1985)

Key generation:
• Generate large primes p, q such that q divides p-1

– 2159 < q < 2160, 2511+64t < p < 2512+64t where 0≤t≤8

• Select h∈Zp* and compute g=h(p-1)/q mod p

• Select random x such 1≤x≤q-1, compute y=gx mod p

Public key: (p, q, g, y=gx mod p), private key: x
Security of DSS requires hardness of discrete log

• If could solve discrete logarithm problem, would extract
x (private key) from gx mod p (public key)

27

DSS: Signing a Message

Message

Hash function
(SHA-1)

Random secret
between 0 and q

Compute r = (gk mod p) mod q

Private key

Compute s = k-1⋅(H(M)+x⋅r) mod q

(r,s) is the
signature on M

28

DSS: Verifying a Signature

Message

Signature

Compute w = s’-1 mod q

Compute (gH(M’)w ⋅ yr’w mod q mod
p) mod q

Public key

If they match, signature is valid

29

Why DSS Verification Works

 If (r,s) is a legitimate signature, then
 r = (gk mod p) mod q ; s = k-1⋅(H(M)+x⋅r) mod q

Thus H(M) = -x⋅r+k⋅s mod q

• Multiply both sides by w=s-1 mod q

H(M)⋅w + x⋅r⋅w = k mod q

• Exponentiate g to both sides

(gH(M)⋅w + x⋅r⋅w = gk) mod p mod q

• In a valid signature, gk mod p mod q = r, gx mod p = y

Verify gH(M)⋅w⋅yr⋅w = r mod p mod q

30

Security of DSS

Can’t create a valid signature without private key
Given a signature, hard to recover private key
Can’t change or tamper with signed message
 If the same message is signed twice, signatures are

different
• Each signature is based in part on random secret k

Secret k must be different for each signature!
• If k is leaked or if two messages re-use the same k,

attacker can recover secret key x and forge any signature
from then on

31

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

32

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

33

Next Homework

You’ll be looking at WinZip’s new AE-2 encryption
scheme
• Based on “Encrypt-then-MAC” (recall a few classes ago

--- this is a provably secure mode)
• But things aren’t always that simple

– Many protocols seem secure but actually have problems

• Your job: Analyze AE-2

34

Very popular Windows compression utility. Also an
Outlook email plugin. Over 160 million downloads from
download.com alone [http://www.winzip.com/
empopp.htm].

WinZipFile Archive.zip

What is WinZip?

35

WinZip encryption

WinZip has the ability to encrypt files. Lots of
history, but we’ll look at the AE-2 method.

WinZipFile Archive.zip

Passphrase

36

Archive.zip

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file without AE-2
(high level)

Compression
Algorithm

File

37

Archive.zip

Compressed
Data

Header

Filename

CRC-32

File date/size

compression
type

Zipping a file with AE-2
(high level)

Compression
Algorithm

File

CRC-32 = 0

compression
type = AE

38

Filename

Header

AES-CTR
then

HMAC-SHA1

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Zipping a file with AE-2
(high level)

Key check val

Salt

File

PBKDF
Passphrase Encrypted

and MACed
Data

Compression
Algorithm

Header

Filename

CRC-32 = 0

File date/size

compression
type = AE

compression
type

Version = 2

Key check val

Salt

Encrypted
and MACed

Data

39

