
Symmetric Encryption &
Authentication

+ Networks

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 and CSE M 584 (Winter 2009)

Goals for Today

 Lab 2
 Homework 2 out shortly (will also be short)
 Grading

Goals for Today
 Finish symmetric crypto
 Network Security Attacks

• Routing
• IP
• TCP
• DNS

 Key points:
• Failures at interaction between layers
• Asymmetry between attacker and defender
• Some attacks designers never considered
• All motivations for existing security decisions (SSL/TLS,

filter certain types of packets, check inputs, etc).

Authentication Without Encryption

Integrity and authentication: only someone who knows KEY can
 compute MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

CBC-MAC (whiteboard)

Design
Attack:

• Arbitrary Length Messages
• Possibly: Encode length at end

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Alice Bob

K K

M/invalid

K K

M
Encrypt Decrypt

C

Key K

.Message M

.Ciphertext C Adversary

Recall: Often desire both privacy and integrity. (For SSH,
SSL, IPsec, etc.)

Some subtleties! Encrypt-and-MAC

valid/invalid

M

DecryptKe VerifyKm

DKe,KmEKe,Km
M

C’

EncryptKe

T

MACKm

Ciphertext

TC’

Ciphertext

Return M if
valid

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

But insecure! [BN, Kra]

Assume Alice sends messages:

M2

C’2

EncryptKe

T2

MACKm

M1

C’1

EncryptKe

T1

M3

C’3

EncryptKe

T3

DON’T FIREFIRE FIREFIRE FIRE

MACKm MACKm

T1 T3

If Ti = Tj then Mi = Mj

	 Adversary learns whether two plaintexts are equal.

Especially problematic when M1, M2, ... take on only a small
number of possible values.

The Secure Shell (SSH) protocol is designed to provide:

• Secure remote logins.

• Secure file transfers.

Where security includes:

• Protecting the privacy of users’ data.

• Protecting the integrity of users’ data.

OpenSSH is included in the default installations of OS X and
many Linux distributions.

C’

paddingpdlpl

1 byte4 bytes

M

T

EncryptKe MACKm

M
Data to be

communicated

ctr

4 bytes

Maintained internally; not
transmitted

EKe,Km

Ciphertext packet

Authenticated encryption in SSH

T1C’1

EncryptKe MACKm

M1ctr1

T2T1

M2M1 FIREFIRE

Assume Alice sends messages M1 and M2 that are the same.

What’s different about SSH?

T2C’2

EncryptKe MACKm

M2ctr2 FIREFIRE

Then the tags T1 and T2 will be different with high probability.

10

But if counters repeat, tags may once
again leak private information about data.

Results of [BN00,Kra01]

Strong (CTXT)

Strong (CCA) Weak (CPA) InsecurePrivacy

Integrity Weak (PTXT) Weak (PTXT)

MAC-then-EncryptEncrypt-then-MAC Encrypt-and-MAC

M MACKm

TM

EncryptKe

C
Ciphertext C

M

EncryptKe MACKm

TC’
Ciphertext C

EncryptKe

M

MACKmC’

TC’
Ciphertext C

Internet Infrastructure

local network

Internet service
provider (ISP)

backbone

ISP

local network

 TCP/IP for packet routing and connections
 Border Gateway Protocol (BGP) for route discovery
 Domain Name System (DNS) for IP address discovery

OSI Protocol Stack

application

presentation

session

transport

network

data link

physical

IP

TCP

email, Web, NFS

RPC

Ethernet

Data Formats

Application data

dataTCP
header dataTCP

header dataTCP
header

dataTCP
header

IP
header

dataTCP
header

IP
header

Ethernet
header

Ethernet
trailer

application
layer

transport
layer

network
layer

data link
layer

message

segment

packet

frame

TCP (Transmission Control Protocol)

Sender: break data into packets
• Sequence number is attached to every packet

Receiver: reassemble packets in correct order
• Acknowledge receipt; lost packets are re-sent

Connection state maintained on both sides

book
remember received pages

and reassemblemail each
page

IP (Internet Protocol)

Connectionless
• Unreliable, “best-effort” protocol

Uses numeric addresses for routing
• Typically several hops in the route

Alice’s computer

Alice’s ISP

Bob’s ISP

Bob’s computer

Packet
Source 128.83.130.239

171.64.66.201

3

Dest

Seq
128.83.130.239

171.64.66.201

IP Routing

Routing of IP packets is based on IP addresses
Routers use a forwarding table

• Entry = destination, next hop, network interface, metric
• For each packet, a table look-up is performed to

determine how to route it

Routing information exchange allows update of old
routes and creation of new ones
• RIP (Routing Information Protocol)
• OSPF (Open Shortest Path First Protocol)
• BGP (Border Gateway Protocol)

BGP Misconfiguration

Domain advertises good routes to addresses it does
not known how to reach
• Result: packets go into a network “black hole”

April 25, 1997: “The day the Internet died”
• AS7007 (Florida Internet Exchange) de-aggregated the

BGP route table and re-advertised all prefixes as if it
originated paths to them

• In effect, AS7007 was advertising that it has the best
route to every host on the Internet

• Huge network instability as incorrect routing data
propagated and routers crashed under traffic

ICMP (Control Message Protocol)

Provides feedback about network operation
• “Out-of-band” messages carried in IP packets
• Error reporting, congestion control, reachability, etc.

Example messages:
• Destination unreachable
• Time exceeded
• Parameter problem
• Redirect to better gateway
• Reachability test (echo / echo reply)
• Message transit delay (timestamp request / reply)

Security Issues in TCP/IP

Network packets pass by untrusted hosts
• Eavesdropping (packet sniffing)

 IP addresses are public
• Smurf attacks

TCP connection requires state
• SYN flooding

TCP state is easy to guess
• TCP spoofing and connection hijacking

 network

Packet Sniffing

Many applications send data unencrypted
• ftp, telnet send passwords in the clear

Network interface card (NIC) in “promiscuous mode”
reads all passing data

Solution: encryption (e.g., IPSec), improved routing

Smurf Attack

gateway victim

1 ICMP Echo Req
Src: victim’s address
Dest: broadcast address

Looks like a legitimate
“Are you alive?” ping

request from the victim

Every host on the network
generates a ping (ICMP
Echo Reply) to victim

Stream of ping replies
overwhelms victim

Solution: reject external packets to broadcast addresses

“Ping of Death”

 If an old Windows machine received an ICMP packet
with a payload longer than 64K, machine would
crash or reboot
• Programming error in older versions of Windows
• Packets of this length are illegal, so programmers of

Windows code did not account for them

Recall “security theme” of this course - every line of
code might be the target of an adversary

Solution: patch OS, filter out ICMP packets

TCP Handshake

C S

SYNC

SYNS, ACKC

ACKS

Listening…

Store data
(connection state, etc.)

Wait

Connected

SYN Flooding Attack

S

SYNC1 Listening…

Spawn a new thread,
store connection data

SYNC2

SYNC3

SYNC4

SYNC5

… and more

… and more

… and more

… and more

… and more

SYN Flooding Explained

Attacker sends many connection requests with
spoofed source addresses

Victim allocates resources for each request
• Connection state maintained until timeout
• Fixed bound on half-open connections

Once resources exhausted, requests from legitimate
clients are denied

This is a classic denial of service (DoS) attack
• Common pattern: it costs nothing to TCP initiator to send

a connection request, but TCP responder must allocate
state for each request (asymmetry!)

Preventing Denial of Service

DoS is caused by asymmetric state allocation
• If responder opens a state for each connection attempt,

attacker can initiate thousands of connections from bogus
or forged IP addresses

Cookies ensure that the responder is stateless until
initiator produced at least 2 messages
• Responder’s state (IP addresses and ports of the con-

nection) is stored in a cookie and sent to initiator
• After initiator responds, cookie is regenerated and

compared with the cookie returned by the initiator

SYN Cookies
[Bernstein and Schenk]

C S

SYNC Listening…

Does not store state

F(source addr, source port,
 dest addr, dest port,
 coarse time, server secret)

SYNS, ACKC
sequence # = cookie

Cookie must be unforgeable
 and tamper-proof (why?)
Client should not be able
 to invert a cookie (why?)

F=Rijndael or crypto hash

Recompute cookie,
compare with with the one
received, only establish
connection if they match

ACKS(cookie)

Compatible with standard TCP;
simply a “weird” sequence number scheme

More info: http://cr.yp.to/syncookies.html

Anti-Spoofing Cookies: Basic Pattern

Client sends request (message #1) to server
Typical protocol:

• Server sets up connection, responds with message #2
• Client may complete session or not (potential DoS)

Cookie version:
• Server responds with hashed connection data instead of

message #2
• Client confirms by returning hashed data

– If source IP address is bogus, attacker can’t confirm

• Need an extra step to send postponed message #2,
except in TCP (SYN-ACK already there)

Another Defense: Random Deletion

121.17.182.45

231.202.1.16

121.100.20.14

5.17.95.155

SYNC

 If SYN queue is full, delete random entry
• Legitimate connections have a chance to complete
• Fake addresses will be eventually deleted

Easy to implement

half-open connections

TCP Connection Spoofing

Each TCP connection has an associated state
• Sequence number, port number

TCP state is easy to guess
• Port numbers are standard, sequence numbers are often

predictable
• Can inject packets into existing connections

 If attacker knows initial sequence number and
amount of traffic, can guess likely current number
• Send a flood of packets with likely sequence numbers

“Blind” IP Spoofing Attack

Trusted connection between Alice and Bob
uses predictable sequence numbers

Alice Bob

 SYN-flood Bob’s queue

 Send packets to Alice that
 resemble Bob’s packets

 Open connection to Alice to
 get initial sequence number

 Can’t receive packets sent to Bob, but maybe can penetrate Alice’s
computer if Alice uses IP address-based authentication
• For example, rlogin and many other remote access programs uses address-

based authentication

DoS by Connection Reset

 If attacker can guess current sequence number for
an existing connection, can send Reset packet to
close it
• With 32-bit sequence numbers, probability of guessing

correctly is 1/232 (not practical)
• Most systems accept large windows of sequence

numbers ⇒ much higher probability of success
– Need large windows to handle massive packet losses

