
Symmetric Encryption &
Authentication

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 and CSE M 584 (Winter 2009)

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext

is larger than 128-bit block size
Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each
one separately using the block cipher

Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result

of encrypting previous blocks
Counter (CTR) mode

• Use block cipher to generate keystream, like a stream
cipher

 ...

ECB Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

⊕Initialization
vector ⊕ ⊕ ⊕

CTR Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Still does not guarantee integrity

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

ECB vs. CBC

AES in ECB mode AES in CBC mode

Similar plaintext
blocks produce
similar ciphertext
blocks (not good!)

[Picture due to Bart Preneel]

Information Leakage in ECB Mode
[Wikipedia]

Encrypt in ECB mode

CBC and Electronic Voting

Initialization
vector
(supposed to
 be random)

plaintext

ciphertext

DES DES DES DES

⊕ ⊕ ⊕ ⊕

Found in the source code for Diebold voting machines:

DesCBCEncrypt((des_c_block*)tmp, (des_c_block*)record.m_Data,
 totalSize, DESKEY, NULL, DES_ENCRYPT)

When Is a Cipher “Secure”?

Hard to recover the key?
• What if attacker can learn plaintext without learning the

key?

Hard to recover plaintext from ciphertext?
• What if attacker learns some bits or some function of

bits?

Fixed mapping from plaintexts to ciphertexts?
• What if attacker sees two identical ciphertexts and infers

that the corresponding plaintexts are identical?
• Implication: encryption must be randomized or stateful

How Can a Cipher Be Attacked?
Assume that the attacker knows the encryption

algorithm and wants to decrypt some ciphertext
Main question: what else does attacker know?

• Depends on the application in which cipher is used!
Ciphertext-only attack
Known-plaintext attack (stronger)

• Knows some plaintext-ciphertext pairs
Chosen-plaintext attack (even stronger)

• Can obtain ciphertext for any plaintext of his choice
Chosen-ciphertext attack (very strong)

• Can decrypt any ciphertext except the target
• Sometimes very realistic model

The Chosen-Plaintext Game
Attacker does not know the key
He chooses as many plaintexts as he wants, and

learns the corresponding ciphertexts
When ready, he picks two plaintexts M0 and M1

• He is even allowed to pick plaintexts for which he
previously learned ciphertexts!

He receives either a ciphertext of M0, or a ciphertext
of M1

He wins if he guesses correctly which one it is

Why Hide Everything?
Leaking even a little bit of information about the

plaintext can be disastrous
Electronic voting

• 2 candidates on the ballot (1 bit to encode the vote)
• If ciphertext leaks the parity bit of the encrypted

plaintext, eavesdropper learns the entire vote

D-Day: Pas-de-Calais or Normandy?
• Allies convinced Germans that invasion will take place at

Pas-de-Calais
– Dummy landing craft, feed information to double spies

• Goal: hide a 1-bit secret

Also, want a strong definition, that implies others

Defining Security

 Idea: attacker should not be able to learn
 even a single bit of the encrypted plaintext
Define Enc(M0,M1,b) to be a function that returns

encrypted Mb

• Given two plaintexts, Enc returns a ciphertext of one or
the other depending on the value of bit b

• Think of Enc as a magic box that computes ciphertexts
on attacker’s demand. He can obtain a ciphertext of any
plaintext M by submitting M0=M1=M, or he can try to
learn even more by submitting M0≠M1.

Attacker’s goal is to learn just one bit b

0 or 1

Chosen-Plaintext Security

Consider two experiments (A is the attacker)
 Experiment 0 Experiment 1

 A interacts with Enc(-,-,0) A interacts with Enc(-,-,1)
 and outputs bit d and outputs bit d

• Identical except for the value of the secret bit

• d is attacker’s guess of the secret bit
Attacker’s advantage is defined as

| Prob(A outputs 1 in Exp0) - Prob(A outputs 1 in Exp1)) |

Encryption scheme is chosen-plaintext secure if this
advantage is negligible for any efficient A

If A “knows” secret bit, he
should be able to make his
output depend on it

Simple Example

Any deterministic, stateless symmetric encryption
scheme is insecure
• Attacker can easily distinguish encryptions of different

plaintexts from encryptions of identical plaintexts
• This includes ECB mode of common block ciphers!

 Attacker A interacts with Enc(-,-,b)

 Let X,Y be any two different plaintexts

 C1 ← Enc(X,Y,b); C2 ← Enc(Y,Y,b);

 If C1=C2 then b=1 else say b=0

The advantage of this attacker A is 1

Prob(A outputs 1 if b=0)=0 Prob(A outputs 1 if b=1)=1

International Criminal Tribunal for
Rwanda

http://www.nytimes.com/2009/01/27/science/
27arch.html?_r=1&ref=science

Credits: Alexei Czeskis, Karl Koscher, Batya Friedman

Integrity

goodFile

Software manufacturer wants to ensure that the executable file
 is received by users without modification.
It sends out the file to users and publishes its hash in NY Times.
The goal is integrity, not secrecy

Idea: given goodFile and hash(goodFile),
 very hard to find badFile such that hash(goodFile)=hash(badFile)

BigFirm™ User

VIRUS

badFile

The Times
hash(goodFile)

Integrity vs. Secrecy

 Integrity: attacker cannot tamper with message
Encryption does not always guarantee integrity

• Intuition: attacker may able to modify message under
encryption without learning what it is
– One-time pad: given key K, encrypt M as M⊕K

– This guarantees perfect secrecy, but attacker can easily change
unknown M under encryption to M⊕M’ for any M’

– Online auction: halve competitor’s bid without learning its value

• This is recognized by industry standards (e.g., PKCS)
– “RSA encryption is intended primarily to provide confidentiality… It

is not intended to provide integrity” (from RSA Labs Bulletin)

Hash Functions: Main Idea

bit strings of any length n-bit bit strings

. .

.
.
.

x’
x’’

x

y’

y

hash function H

 H is a lossy compression function
• Collisions: h(x)=h(x’) for distinct inputs x, x’
• Result of hashing should “look random” (make this precise later)

– Intuition: half of digest bits are “1”; any bit in digest is “1” half the time

 Cryptographic hash function needs a few properties…

message
“digest”

message

One-Way

 Intuition: hash should be hard to invert
• “Preimage resistance”
• Let h(x’)=y∈{0,1}n for a random x’
• Given y, it should be hard to find any x such that h(x)

=y

How hard?
• Brute-force: try every possible x, see if h(x)=y
• SHA-1 (common hash function) has 160-bit output

– Suppose have hardware that’ll do 230 trials a pop
– Assuming 234 trials per second, can do 289 trials per year
– Will take around 270 years to invert SHA-1 on a random image

Collision Resistance
Should be hard to find distinct x, x’ such that

h(x)=h(x’)
• Brute-force collision search is only O(2n/2), not O(2n)
• For SHA-1, this means O(280) vs. O(2160)

Birthday paradox (informal)
• Let t be the number of values x,x’,x’’… we need to look at

before finding the first pair x,x’ s.t. h(x)=h(x’)
• What is probability of collision for each pair x,x’?
• How many pairs would we need to look at before finding

the first collision?

• How many pairs x,x’ total?

• What is t?

1/2n

O(2n)

2n/2

Choose(2,t)=t(t-1)/2 ∼ O(t2)

One-Way vs. Collision Resistance

One-wayness does not imply collision resistance
• Suppose g is one-way
• Define h(x) as g(x’) where x’ is x except the last bit

– h is one-way (to invert h, must invert g)
– Collisions for h are easy to find: for any x, h(x0)=h(x1)

Collision resistance does not imply one-wayness
• Suppose g is collision-resistant
• Define h(x) to be 0x if x is n-bit long, 1g(x) otherwise

– Collisions for h are hard to find: if y starts with 0, then there are
no collisions, if y starts with 1, then must find collisions in g

– h is not one way: half of all y’s (those whose first bit is 0) are
easy to invert (how?); random y is invertible with probab. 1/2

Weak Collision Resistance

Given randomly chosen x, hard to find x’ such
that h(x)=h(x’)
• Attacker must find collision for a specific x. By

contrast, to break collision resistance, enough to find
any collision.

• Brute-force attack requires O(2n) time
• AKA second-preimage collision resistance

Weak collision resistance does not imply collision
resistance

Which Property Do We Need?

UNIX passwords stored as hash(password)
• One-wayness: hard to recover password

 Integrity of software distribution
• Weak collision resistance
• But software images are not really random… maybe need

full collision resistance
Auction bidding

• Alice wants to bid B, sends H(B), later reveals B
• One-wayness: rival bidders should not recover B
• Collision resistance: Alice should not be able to change

her mind to bid B’ such that H(B)=H(B’)

Common Hash Functions
MD5

• 128-bit output
• Designed by Ron Rivest, used very widely
• Collision-resistance broken (summer of 2004)

RIPEMD-160
• 160-bit variant of MD5

SHA-1 (Secure Hash Algorithm)
• 160-bit output
• US government (NIST) standard as of 1993-95

– Also the hash algorithm for Digital Signature Standard (DSS)

SHA-256, SHA-512 (today)
AHS (NIST competition, future)

Basic Structure of SHA-1 (Skip)
Against padding attacks

Split message into 512-bit blocks

Compression function
• Applied to each 512-bit block
 and current 160-bit buffer
• This is the heart of SHA-1

160-bit buffer (5 registers)
initialized with magic values

SHA-1 Compression Function (Skip)

Current message block

Current buffer (five 32-bit registers A,B,C,D,E)

Buffer contains final hash value

Very similar to a block cipher,
with message itself used
as the key for each round

Four rounds, 20 steps in each

Let’s look at each step
in more detail…

Fifth round adds the original
buffer to the result of 4 rounds

A EB C D

A EB C D

+

+

ft
5 bitwise
left-rotate

Wt

Kt

One Step of SHA-1 (80 steps total) (Skip)

Special constant added
(same value in each 20-step round,
4 different constants altogether)

Logic function for steps
• (B∧C)∨(¬B∧D) 0..19
• B⊕C⊕D 20..39
• (B∧C)∨(B∧D)∨(C∧D) 40..59
• B⊕C⊕D 60..79

Current message block mixed in
• For steps 0..15, W0..15=message block
• For steps 16..79,
 Wt=Wt-16⊕Wt-14⊕Wt-8⊕Wt-3

+

+

Multi-level shifting of message blocks

30 bitwise
left-rotate

How Strong Is SHA-1?

Every bit of output depends on every bit of input
• Very important property for collision-resistance

Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 280 ops

Some recent weaknesses
• Collisions can be found in 263 ops (2005)

Authentication Without Encryption

Integrity and authentication: only someone who knows KEY can
 compute MAC for a given message

Alice Bob

KEY
KEY

message

MAC
(message authentication code)

message, MAC(KEY,message)

=
?

Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

HMAC

Construct MAC by applying a cryptographic hash
function to message and key
• Could also use encryption instead of hashing, but…
• Hashing is faster than encryption in software
• Library code for hash functions widely available
• Can easily replace one hash function with another
• There used to be US export restrictions on encryption

 Invented by Bellare, Canetti, and Krawczyk (1996)
• HMAC strength established by cryptographic analysis

Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

Embedded hash function
(strength of HMAC relies on

strength of this hash function)

“Black box”: can use this HMAC
construction with any hash function
(why is this important?)

Block size of embedded hash function

Secret key padded
to block size

magic value (flips half of key bits)

another magic value
(flips different key bits)

hash(key,hash(key,message))

“Amplify” key material
(get two keys out of one)

Very common problem:
given a small secret, how to
derive a lot of new keys?

