
Software Security: Attacks,
Defenses, and Design Principles

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 / CSE M 584 (Winter 2009)

Goals for Today

 Software security
• Software lifecycle

• Buffer overflow attacks
• TOCTOU
• Integer Overflow, Casting
• Timing Attacks

• Defensive Mechanisms
• Software Development Design Principles

 Lab 1 online
 Remember: Ethics form & mailing list

Software Lifecycle (Simplified)

 Requirements
 Design
 Implementation
 Testing
 Use

Software problems are ubiquitous

Software problems are ubiquitous

http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

http://www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

 NASA Mars Lander
• Bug in translation between English and metric units
• Cost taxpayers $165 million

 Denver Airport baggage system
• Bug caused baggage carts to become out of “sync,”

overloaded, etc.
• Delayed opening for 11 months, at $1 million per day

Other fatal or potentially fatal bugs
• US Vicennes tracking software
• MV-22 Ospray
• Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html

Adversarial Failures

 Software bugs are bad
• Consequences can be serious

 Even worse when an intelligent adversary wishes
to exploit them!
• Intelligent adversaries: Force bugs into “worst

possible” conditions/states
• Intelligent adversaries: Pick their targets

 Buffer overflows bugs: Big class of bugs
• Normal conditions: Can sometimes cause systems to

fail
• Adversarial conditions: Attacker able to violate security

of your system (control, obtain private information, ...)

A Bit of History: Morris Worm

Worm was released in 1988 by Robert Morris
• Graduate student at Cornell, son of NSA chief scientist
• Convicted under Computer Fraud and Abuse Act,

sentenced to 3 years of probation and 400 hours of
community service

• Now an EECS professor at MIT

Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

 Due to a coding error, it created new copies as fast
as it could and overloaded infected machines

 $10-100M worth of damage

Morris Worm and Buffer Overflow

One of the worm’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems
• By sending special string to finger daemon, worm

caused it to execute code creating a new worm copy
• Unable to determine remote OS version, worm also

attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

Buffer Overflow These Days

 Very common cause of Internet attacks
• In 1998, over 50% of advisories published by CERT

(computer security incident report team) were caused by
buffer overflows

Morris worm (1988): overflow in fingerd
• 6,000 machines infected

 CodeRed (2001): overflow in MS-IIS server
• 300,000 machines infected in 14 hours

 SQL Slammer (2003): overflow in MS-SQL server
• 75,000 machines infected in 10 minutes (!!)

 Buffer is a data storage area inside computer
memory (stack or heap)
• Intended to hold pre-defined amount of data

– If more data is stuffed into it, it spills into adjacent memory

• If executable code is supplied as “data”, victim’s machine
may be fooled into executing it – we’ll see how

– Code will self-propagate or give attacker control over machine

 First generation exploits: stack smashing
 Later generations: function pointers, off-by-one,

format strings and heap management structures

Attacks on Memory Buffers

Stack Buffers

 Suppose Web server contains this function
 void func(char *str) {

 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

 No bounds checking on strcpy()
 If str is longer than 126 bytes

• Program may crash
• Attacker may change program behavior

buf uh oh!

buf authenticated11 (yeah!)

Changing Flags

 Suppose Web server contains this function
 void func(char *str) {

 int authenticated = 0;
 char buf[126];
 ...
 strcpy(buf,str);
 ...
 }

 Authenticated variable non-zero when user has
extra privileges

Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd

Memory Layout

 Text region: Executable code of the program
 Heap: Dynamically allocated data
 Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

 Suppose Web server contains this function
 void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

When this function is invoked, a new frame with
local variables is pushed onto the stack

Stack Buffers

Allocate local buffer
(126 bytes reserved on stack)

Copy argument into local buffer

ret/IP Caller’s frame

Addr 0xFF...F

Saved SP

Execute code at this address after func() finishes

buf

Local variables

str

Args

Memory pointed to by str is copied onto stack…
 void func(char *str) {

 char buf[126];
 strcpy(buf,str);
 }

 If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

What If Buffer is Overstuffed?

strcpy does NOT check whether the string
at *str contains fewer than 126 characters

ret/IP Caller’s frame

Addr 0xFF...F

Saved SPbuf

Local variables

str

Args

 Suppose buffer contains attacker-created string
• For example, *str contains a string received from the

network as input to some network service daemon

When function exits, code in the buffer will be
executed, giving attacker a shell
• Root shell if the victim program is setuid root

Executing Attack Code

ret/IPSaved SPbuf Caller’s stack frame

Addr 0xFF...F

Attacker puts actual assembly
instructions into his input string, e.g.,

binary code of execve(“/bin/sh”)

exec(“/bin/sh”)

In the overflow, a pointer back
into the buffer appears in

the location where the system
expects to find return address

Caller’s framestr

 Executable attack code is stored on stack, inside
the buffer containing attacker’s string
• Stack memory is supposed to contain only data, but…

Overflow portion of the buffer must contain correct
address of attack code in the RET position
• The value in the RET position must point to the

beginning of attack assembly code in the buffer
– Otherwise application will crash with segmentation violation

• Attacker must correctly guess in which stack position his
buffer will be when the function is called

Buffer Overflow Issues

Problem: No Range Checking

 strcpy does not check input size
• strcpy(buf, str) simply copies memory contents into buf

starting from *str until “\0” is encountered, ignoring
the size of area allocated to buf

Many C library functions are unsafe
• strcpy(char *dest, const char *src)
• strcat(char *dest, const char *src)
• gets(char *s)
• scanf(const char *format, …)
• printf(const char *format, …)

 strncpy(char *dest, const char *src, size_t n)
• If strncpy is used instead of strcpy, no more than n

characters will be copied from *src to *dest
– Programmer has to supply the right value of n

 Potential overflow in htpasswd.c (Apache 1.3):
strcpy(record,user);

strcat(record,”:”);

strcat(record,cpw); …

 Published “fix”:

 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Does Range Checking Help?

Copies username (“user”) into buffer (“record”),
then appends “:” and hashed password (“cpw”)

 Published “fix” for Apache htpasswd overflow:

 … strncpy(record,user,MAX_STRING_LEN-1);
 strcat(record,”:”);
 strncat(record,cpw,MAX_STRING_LEN-1); …

Misuse of strncpy in htpasswd “Fix”

MAX_STRING_LEN bytes allocated for record buffer

contents of *user

Put up to MAX_STRING_LEN-1
characters into buffer

:

Put “:”

contents of *cpw

Again put up to MAX_STRING_LEN-1
characters into buffer

 Home-brewed range-checking string copy
 void notSoSafeCopy(char *input) {

 char buffer[512]; int i;
 for (i=0; i<=512; i++)
 buffer[i] = input[i];
 }
 void main(int argc, char *argv[]) {
 if (argc==2)
 notSoSafeCopy(argv[1]);
 }

Off-By-One Overflow

 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame
• On little-endian architecture, make it point into buffer
• RET for previous function will be read from buffer!

This will copy 513
characters into
buffer. Oops!

Memory Layout

 Text region: Executable code of the program
 Heap: Dynamically allocated data
 Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Text region Heap Stack
Addr 0x00...0 Addr 0xFF...F

Top Bottom

Overflowing buffers on heap can change pointers
that point to important data
• Sometimes can also transfer execution to attack code
• Can cause program to crash by forcing it to read from an

invalid address (segmentation violation)
 Illegitimate privilege elevation: if program with

overflow has sysadm/root rights, attacker can use it
to write into a normally inaccessible file
• For example, replace a filename pointer with a pointer

into buffer location containing name of a system file
– Instead of temporary file, write into AUTOEXEC.BAT

Heap Overflow

 C uses function pointers for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(…)

Function Pointer Overflow

attack code

Buffer with attacker-supplied
input string

Callback
pointer

Heap

Legitimate function F

overflow

(elsewhere in memory)

 Proper use of printf format string:
 … int foo=1234;

 printf(“foo = %d in decimal, %X in hex”,foo,foo); …
– This will print

 foo = 1234 in decimal, 4D2 in hex

 Sloppy use of printf format string:
 … char buf[14]=“Hello, world!”;

 printf(buf);
 // should’ve used printf(“%s”, buf); …

– If buffer contains format symbols starting with %, location
pointed to by printf’s internal stack pointer will be interpreted as
an argument of printf. This can be exploited to move printf’s
internal stack pointer.

Format Strings in C

%x format symbol tells printf to output data on
stack

 … printf(“Here is an int: %x”,i); …

What if printf does not have an argument?
 … char buf[16]=“Here is an int: %x”;

 printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

Or what about:
 … char buf[16]=“Here is a string: %s”;

 printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

Viewing Memory

%n format symbol tells printf to write the number
of characters that have been printed

 … printf(“Overflow this!%n”,&myVar); …

– Argument of printf is interpeted as destination address

– This writes 14 into myVar (“Overflow this!” has 14 characters)

What if printf does not have an argument?
 … char buf[16]=“Overflow this!%n”;

 printf(buf); …

– Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will
be written.

Writing Stack with Format Strings

More Buffer Overflow Targets

 Heap management structures used by malloc()
 URL validation and canonicalization

• If Web server stores URL in a buffer with overflow, then
attacker can gain control by supplying malformed URL

– Nimda worm propagated itself by utilizing buffer overflow in
Microsoft’s Internet Information Server

 Some attacks don’t even need overflow
• Naïve security checks may miss URLs that give attacker

access to forbidden files
– For example, http://victim.com/user/../../autoexec.bat may pass

naïve check, but give access to system file
– Defeat checking for “/” in URL by using hex representation:

%5c or %255c.

TOCTOU

 TOCTOU == Time of Check to Time of Use

 Goal: Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat

and open (and access files he or she shouldn’t)

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of
input into buf

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result: Allocate a 4-byte buffer, then read a lot of

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

Timing Attacks

 Assume there are no “typical” bugs in the
software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against

Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

 Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
• Total tries: 256*8 = 2048

Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products

Preventing Buffer Overflow

 Use safe programming languages, e.g., Java
• What about legacy C code?

Mark stack as non-executable
 Randomize stack location or encrypt return address

on stack by XORing with random string
• Attacker won’t know what address to use in his or her

string
 Static analysis of source code to find overflows
 Run-time checking of array and buffer bounds

• StackGuard, libsafe, many other tools

 Black-box testing with long strings

Non-Executable Stack

 NX bit on every Page Table Entry
• AMD Athlon 64, Intel P4 “Prescott”
• Code patches marking stack segment as non-executable

exist for Linux, Solaris, OpenBSD
 Some applications need executable stack

• For example, LISP interpreters
 Does not defend against return-to-libc exploits

• Overwrite return address with the address of an existing
library function (can still be harmful)

…nor against heap and function pointer overflows
…nor changing stack internal variables (auth

flag, ...)

buf

 Embed “canaries” in stack frames and verify their
integrity prior to function return
• Any overflow of local variables will damage the canary

 Choose random canary string on program start
• Attacker can’t guess what the value of canary will be

 Terminator canary: “\0”, newline, linefeed, EOF
• String functions like strcpy won’t copy beyond “\0”

Run-Time Checking: StackGuard

ret/IPSaved SPbuf Caller’s stack frame

ret/IPSaved SP Caller’s stack frame0000canary

StackGuard Implementation

 StackGuard requires code recompilation
 Checking canary integrity prior to every function

return causes a performance penalty
• For example, 8% for Apache Web server

 PointGuard also places canaries next to function
pointers and setjmp buffers
• Worse performance penalty

 StackGuard can be defeated!
• Phrack article by Bulba and Kil3r

Defeating StackGuard (Sketch)

 Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
• strcpy will write into RET without touching canary!

buf sfp RET

Return execution to
this address

canarydst

Suppose program contains strcpy(dst,buf)

sfp RETcanaryBadPointer, attack code &RET

Overwrite destination of strcpy with RET position strcpy will copy
BadPointer here

Run-Time Checking: Libsafe

 Dynamically loaded library
 Intercepts calls to strcpy(dest,src)

• Checks if there is sufficient space in current stack
frame

 |frame-pointer – dest| > strlen(src)
• If yes, does strcpy; else terminates application

PointGuard

 Attack: overflow a function pointer so that it points
to attack code

 Idea: encrypt all pointers while in memory
• Generate a random key when program is executed
• Each pointer is XORed with this key when loaded from

memory to registers or stored back into memory
– Pointers cannot be overflown while in registers

 Attacker cannot predict the target program’s key
• Even if pointer is overwritten, after XORing with key it will

dereference to a “random” memory address

CPU

Memory Pointer
0x1234 Data

1. Fetch pointer value

0x1234

2. Access data referenced by pointer

Normal Pointer Dereference [Cowan]

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x1234
0x1340

Data

1. Fetch pointer value

2. Access attack code referenced
 by corrupted pointer

Attack
code

CPU

Memory Encrypted pointer
0x7239 Data

1. Fetch pointer
 value

0x1234

2. Access data referenced by pointer

PointGuard Dereference [Cowan]

0x1234

Decrypt

0x1234 0x1340

CPU

Memory
Corrupted pointer
0x7239
0x1340

Data

2. Access random address;
 segmentation fault and crash

Attack
code

1. Fetch pointer
 value

0x9786

Decrypt

Decrypts to
random value

0x9786

Fuzz Testing

 Generate “random” inputs to program
• Sometimes conforming to input structures (file

formats, etc)

 See if program crashes
• If crashes, found a bug
• Bug may be exploitable

 Surprisingly effective

 Now standard part of development lifecycle, e.g.,
for IE

Vulnerability Analysis and Disclosure

What do you do if you’ve found a security problem
in a real system?

 Say
• IM client?
• Electronic voting machine?
• ATM machine?
• Hospital drug (morphine) pump

