CSE 484 / CSE M 584 (Winter 2009)

Software Security: Attacks,
Defenses, and Design Principles

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

Goals for Today

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

¢ Software security
o Software lifecycle

o Buffer overflow attacks

e TOCTOU

o Integer Overflow, Casting
e Timing Attacks

e Defensive Mechanisms
e Software Development Design Principles

¢ Lab 1 online
® Remember: Ethics form & mailing list

Software Lifecycle (Simplified)

Bt o - - TS - e o N YV R
INENTRS ol - N 3. 20 il - N 5. 2 ol e WO

® Requirements
Design

¢ Implementation
@ Testing

® Use

Software problems are ubiquitous

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

Posted by kdawson on Sunday February 25, @06:35PM
from the dare-you-to-cross-this-line dept.

mgh02114 writes b

"The new US stealth fighter, the F-22 Haptor, was deployed for the first time to Asia earlier this month. On
Feb. 11, twelve Raptors flying from Hawaii to Japan were forced to turm back when a software glitch crashed
all of the F-22s' on-board computers as they crossed the international date line. The delay in arrival in Japan
was previously reported, with rumors of problems with the software. CNN television, however, this morning
reported that every fighter completely lost all navigation and communications when they crossed the
internaticnal date line. They reportedly had to turmn around and follow their tankers by visual contact back to
Hawaii. According to the CNN story, if they had not been with their tankers, or the weather had been bad, this would have
been serious. CNN has not put up anything on their website yet."

Software problems are ubiquitous

1985-1987 -- Therac-25 medical accelerator. A radiation therapy
device malfunctions and delivers lethal radiation doses at several
medical facilities. Based upon a previous design, the Therac-25 was an
"improved"” therapy system that could deliver two different kinds of
radiation: either a low-power electron beam (beta particles) or X-rays.
The Therac-25's X-rays were generated by smashing high-power
electrons into a metal target positioned between the electron gun and
the patient. A second "improvement"” was the replacement of the older
Therac-20's electromechanical safety interlocks with software control,
a decision made because software was perceived to be more reliable.

What engineers didn't know was that both the 20 and the 25 were
built upon an operating system that had been kludged together by a
programmer with no formal training. Because of a subtle bug called a
"race condition," a quick-fingered typist could accidentally configure
the Therac-25 so the electron beam would fire in high-power mode
but with the metal X-ray target out of position. At least five patients
die; others are seriously injured.

http:// www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubiquitous

January 15, 1990 -- AT&T Network Outage. A bug in a new
release of the software that controls AT&T's #4ESS long distance
switches causes these mammoth computers to crash when they
receive a specific message from one of their neighboring machines -- a
message that the neighbors send out when they recover from a crash.

One day a switch in New York crashes and reboots, causing its
neighboring switches to crash, then their neighbors' neighbors, and so
on. Soon, 114 switches are crashing and rebooting every six seconds,
leaving an estimated 60 thousand people without long distance service
for nine hours. The fix: engineers load the previous software release.

http:// www.wired.com/software/coolapps/news/2005/11/69355

Software problems are ubrqurtous
0 NASA Mars Lander
e Bug in translation between English and metric units
e Cost taxpayers $165 million

¢ Denver Airport baggage system

e Bug caused baggage carts to become out of “sync,”
overloaded, etc.

e Delayed opening for 11 months, at $1 million per day

¢ Other fatal or potentially fatal bugs
e US Vicennes tracking software
o MV-22 Ospray
o Medtronic Model 8870 Software Application Card

From Exploiting Software and http://www.fda.gov/cdrh/recalls/recall-082404b-pressrelease.html

Adversarial Failures

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

¢ Software bugs are bad
e Consequences can be serious

® Even worse when an intelligent adversary wishes

to exploit them!
e Intelligent adversaries: Force bugs into “worst
possible” conditions/states

e Intelligent adversaries: Pick their targets

¢ Buffer overflows bugs: Big class of bugs
e Normal conditions: Can sometimes cause systems to
fail
e Adversarial conditions: Attacker able to violate security
of your system (control, obtain private information, ...)

[[] [
[]
(BNE J NO S ARG R b SNE s RO S NSO R b SN s R S NSO R S NG e R S ARSNGB S A

Yo e VT R
S R e WO

¢ Worm was released in 1988 by Robert Morris
e Graduate student at Cornell, son of NSA chief scientist

e Convicted under Computer Fraud and Abuse Act,
sentenced to 3 years of probation and 400 hours of
community service

e Now an EECS professor at MIT

¢ Worm was intended to propagate slowly and
harmlessly measure the size of the Internet

® Due to a coding error, it created new copies as fast
as it could and overloaded infected machines

¢ $10-100M worth of damage

Morris Worm and Buffer Overflow

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

¢ One of the worm'’s propagation techniques was a
buffer overflow attack against a vulnerable version
of fingerd on VAX systems

e By sending special string to finger daemon, worm
caused it to execute code creating a new worm copy

e Unable to determine remote OS version, worm also
attacked fingerd on Suns running BSD, causing them
to crash (instead of spawning a new copy)

Buffer Overflow These Day

NS 0 N wr NS e M - NS e M S A SIS A NN S ARG B S ENE s NS A b SN

¢ Very common cause of Internet attacks

e In 1998, over 50% of advisories published by CERT

(computer security incident report team) were caused by
buffer overflows

¢ Morris worm (1988): overflow in fingerd
e 6,000 machines infected

¢ CodeRed (2001): overflow in MS-IIS server
e 300,000 machines infected in 14 hours

¢ SQL Slammer (2003): overflow in MS-SQL server
e 75,000 machines infected in 10 minutes (!!)

Attacks on Memory Buffers

NS i NN wr SE s NN A NS i N NS o ¥ wr NS s NN S NS b AN

¢ Buffer is a data storage area inside computer
memory (stack or heap)
e Intended to hold pre-defined amount of data
— If more data is stuffed into it, it spills into adjacent memory

o If executable code is supplied as “data”, victim’s machine
may be fooled into executing it — we'll see how

— Code will self-propagate or give attacker control over machine
@ First generation exploits: stack smashing

¢ Later generations: function pointers, off-by-one,
format strings and heap management structures

Stack Buffers

IR TG S P SR NI T TG S P SR T TP TG P R N T TG N P N PTG SR PSSR NS

buf uh oh!

® Suppose Web server contains this function

void func(char *str) {

char buf[126];
strcpy (buf,str) ;

}
€ No bounds checking on strcpy()

¢ If str is longer than 126 bytes
e Program may crash
e Attacker may change program behavior

Changing Flags

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

buf | (yeah!)
® Suppose Web server contains this function

void func(char *str) {

int authenticated = 0;
char buf[l26];

strcpy (buf,str) ;

}
¢ Authenticated variable non-zero when user has
extra privileges

® Morris worm also overflowed a buffer to overwrite
an authenticated flag in in.fingerd

Memory Layout
® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Text region Heap Stack
Addr 0x00...0 Addr OxFF...F

Stack Buffers

- B B Y C R L . T AR ANELYY "B “a" e B T AR TP ANELTE L A b B T AR ANE LS T L
NS NN TR N R WS NN TR N R WS NN TS N R VST TN

¢ Suppose Web server contains this function
void func (char *str{éi::J Allocate local buffer

(126 bytes reserved on stack)
char buf[126];
strcpy (buf,str) ; % Copy argument into local buffer

}
® When this function is invoked, a new frame with
local variables is pushed onto the stack

buf Saved SP ret/IP‘ Jig® Caller’s frame
kLocaI VgriablesJ Args Addr OxFF..F

Execute code at this address after func() finishes

What If Buffer is Overstuffed?

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

¢ Memory pointed to by str is copied onto stack...

void func(char *str) {

. strcpy does NOT check whether the string
char buf [L2 6] ! A at *str contains fewer than 126 characters
strcpy (buf,str) ;

}

¢ If a string longer than 126 bytes is copied into
buffer, it will overwrite adjacent stack locations

\ . 7

R
Local variables

Args Addr OxFF..F

Executing Attack Code

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

® Suppose buffer contains attacker-created string

e For example, *str contains a string received from the
network as input to some network service daemon

i Caller’s frame

Addr OxFF...F

Attacker puts actual assembly
instructions into his input string, e.g.,
binary code of execve("/bin/sh”)

In the overflow, a pointer back
into the buffer appears in
the location where the system
expects to find return address

executed, giving attacker a shell

¢ When function exits, code in the buffer will be

o Root shell if the victim program is setuid root

Buffer Overflow Issues

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

¢ Executable attack code is stored on stack, inside
the buffer containing attacker’s string

e Stack memory is supposed to contain only data, but...

¢ Overflow portion of the buffer must contain correct
address of attack code in the RET position
e The value in the RET position must point to the
beginning of attack assembly code in the buffer
— Otherwise application will crash with segmentation violation

o Attacker must correctly guess in which stack position his
buffer will be when the function is called

Problem No Range Checking

LNE 5 N S AESGS A SNE A NN S S S S SNE A NN S A B S IS s NS AR SOS r h ENE s R S A b SN

@ strcpy does not check input size
o strcpy(buf, str) simply copies memory contents into buf
starting from *str until "\0” is encountered, ignoring
the size of area allocated to buf
¢ Many C library functions are unsafe
e strcpy(char *dest, const char *src)
o strcat(char *dest, const char *src)
o gets(char *s)
e scanf(const char *format, ...)
e printf(const char *format, ...)

Does Range Checking Help?

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

® strncpy(char *dest, const char *src, size_t n)

o If strncpy is used instead of strcpy, no more than n
characters will be copied from *src to *dest

— Programmer has to supply the right value of n

¢ Potential overflow in htpasswd.c (Apache 1.3):

strcpy(record,user);

Copies username (“user”) into buffer (“record”),
Strcat(record .) then appends “:” and hashed password (“cpw”)
strcat(record,cpw); ...

@ Published “fix":

.. strncg (record, user MAX STRING LEN-1);
strca %record ;

strncat (record, cpw MAX STRING LEN-1) ;

Misuse of strncpy in htpasswd “Fix”

e

Nl L e o -~ mE"
B
ea¥ Y o Tl T, o N

¢ Published “fix” for Apache htpasswd overflow:

.. strnc
strca

§¥(record ,user MAX STRING LEN-1);

strncat (record, cpw,MAX STRING LEN-1);

record,”:") ;

MAX_STRING_LEN bytes allocated for record buffer

—

-~ N
1
contents of *user : contents of *cpw
AN A !
P t \\:II - i
Put up to MAX_STRING_LEN-1 Lu Again PU; up ttO MAﬁ_SJRéNG_LEN 1
characters into buffer Characters Into butrer

Off—By-One Overflow

S Wb NS s F NS A S e WS AN R b BNE s NN S NG R b NG

¢ Home-brewed range-checking string copy
void notSoSafeCopy (char *input) ({

)) This will copy 513
char buffer [512] ; int 1; characters into

for (1=0; i@512; i++) buffer. Oops!
buffer[i] = input[i];

}
void main(int argc, char *argv[]) ({
if (argc==2)
notSoSafeCopy (argv([1l]) ;

}

¢ 1-byte overflow: can’t change RET, but can change
pointer to previous stack frame

e On little-endian architecture, make it point into buffer
e RET for previous function will be read from buffer!

Memory Layout
® Text region: Executable code of the program
¢ Heap: Dynamically allocated data

¢ Stack: Local variables, function return addresses;

grows and shrinks as functions are called and
return

Top Bottom
<

Text region Heap Stack
Addr 0x00...0 Addr OxFF...F

Heap Overflow

(IS e B S ARG R S BN e RS AR ST A NS e RN S NSO R o NG e RN S AR A b BN s AR S RSSO R BN

¢ Overflowing buffers on heap can change pointers
that point to important data
e Sometimes can also transfer execution to attack code

e Can cause program to crash by forcing it to read from an
invalid address (segmentation violation)
@ Illegitimate privilege elevation: if program with
overflow has sysadm/root rights, attacker can use it
to write into a normally inaccessible file

e For example, replace a filename pointer with a pointer
into buffer location containing name of a system file

— Instead of temporary file, write into AUTOEXEC.BAT

Function Pointer Overflow

® C uses for callbacks: if pointer to F
is stored in memory location P, then another
function G can call F as (*P)(...)

Buffer with attacker-supplied Callback

input string pointer
-~ —" N\ A N\
Heap attack code overflow

!

Legitimate function F

(elsewhere in memory)

Format Strings in C

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

@ Proper use of printf format string:
. int foo=1234;

printf (“foo = %d in decimal, %X in hex”,foo,foo); ..

— This will print
foo = 1234 in decimal, 4D2 in hex

@ Sloppy use of printf format string:

.. char buf[l4]=“Hello, world!”;

printf (buf) ;
// should’ve used printf (“%s”, buf),; ..

— If buffer contains format symbols starting with %, location
pointed to by printf’s internal stack pointer will be interpreted as
an argument of printf. This can be exploited to move printf’s
internal stack pointer.

Viewing Memory

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

® %x format symbol tells printf to output data on
stack

.. printf (“Here is an int: $x” ,1); ..
14

¢ What if printf does not have an argument?

.. char buf[l6]=“"Here is an int: $%x”;

printf (buf) ; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as an int. (What if crypto key, password, ...?)

¢ Or what about:

.. char buf[l6]=“"Here is a string: %s”;

printf (buf) ; ..

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as a pointer to a string

ertlng Stack Wlth Format Strlngs

RS SN s RN S ARG R S NG s RS NSO R S SN s RO S RSO R S NG

¢ %n format symbol tells printf to write the humber
of characters that have been printed

.. printf (“Overflow this!%n”,6 &myVar),; ..

— Argument of printf is interpeted as destination address
— This writes 14 into myVar (“Overflow this!” has 14 characters)

¢ What if printf does not have an argument?
.. char buf[l6]=“"Overflow this'!'%n”;

printf (buf) ; .

— Stack location pointed to by printf’s internal stack pointer will be
interpreted as address into which the number of characters will
be written.

More Buffer Overflow Targets

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

® Heap management structures used by malloc()
¢ URL validation and canonicalization

o If Web server stores URL in a buffer with overflow, then
attacker can gain control by supplying malformed URL

— Nimda worm propagated itself by utilizing buffer overflow in
Microsoft’s Internet Information Server

€ Some attacks don’t even need overflow

e Naive security checks may miss URLs that give attacker
access to forbidden files

— For example, http://victim.com/user/../../autoexec.bat may pass
naive check, but give access to system file

— Defeat checking for /" in URL by using hex representation:
%5c or %255c.

T I T T T B o Sl TIPS R TN e W O\ W R P TN e S W I G R L + /T T B W W R T P W e e
L 2 X — - Ao G _ S “uus X —_— _ ? <l _ & » X — - 1. » - ! » - . »

€ TOCTOU == Time of Check to Time of Use

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S _ISRREG(s.st mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O RDONLY) ;

}
¢ Goal: Open only regular files (not symlink, etc)

¢ Attacker can change meaning of path between stat
and open (and access files he or she shouldn't)

Integer Overﬂow and ImpI|C|t Cast

s

char buf[80],
void vulnerable() {
int len = read int from network();
char *p = read string from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;

}
memcpy (buf, p, len);

}

void *memcpy(void *dst, const void * src, size t n);

typedef unsigned int size t;

¢ If len is negative, may copy huge amounts of
input into buf

(from wwwe-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

size t len = read_int_ from network();

char *buf;
buf = malloc(len+5);
read(fd, buf, len);

¢ What if len is large (e.g., len = OXFFFFFFFF)?

® Then len + 5 = 4 (on many platforms)

® Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from wwwe-inst.eecs.berkeley.edu—implflaws.pdf)

I . . l \tt k
(BNE s N 2 AR B b SNE s N S ARG R b NS s R

¢ Assume there are no “typical” bugs in the
software
o No buffer overflow bugs
e No format string vulnerabilities
e Good choice of randomness
e Good design

® The software may still be vulnerable to timing
attacks

o Software exhibits input-dependent timings
¢ Complex and hard to fully protect against

LS SN R S NG s RS NSO R S NG e R S RSO b NG

Password Checker

NS i NN wr NS s W - - NS e T - RS BN 6 NN S ASAGS B b NE RN S SN S b AN

¢ Functional requirements

e PwdCheck(RealPwd, CandidatePwd) should:
— Return TRUE if RealPwd matches CandidatePwd
— Return FALSE otherwise

e RealPwd and CandidatePwd are both 8 characters long
¢ Implementation (like TENEX system)

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to8do
if (RealPwd][i] !'= CandidatePwd[i]) then
return FALSE
return TRUE

#® Clearly meets functional description

Attacker Model

PwdCheck(ReaIPwd CandldatePwd) // both 8 chars
fori=1to8do
if (RealPwd[i] != CandidatePwd[i]) then
return FALSE
return TRUE

¢ Attacker can guess CandidatePwds through some
standard interface

¢ Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities
® Better: Time how long it takes to reject a

CandidatePasswd. Then try all possibilities for first
character, then second, then third,

e Total tries: 256*8 = 2048

- Nl L e o -~ mE"
o B i
Cat o al T, o N

Other Examples

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

@ Plenty of other examples of timings attacks

e AES cache misses
— AES is the “"Advanced Encryption Standard”
— It is used in SSH, SSL, IPsec, PGP, ...

e RSA exponentiation time
— RSA is a famous public-key encryption scheme
— It's also used in many cryptographic protocols and products

ot -

Preventing Buffer Overflow

- R WS e e T R
] - ot - SN TR N SR DERNE

¢ Use safe programming languages, e.g., Java
e What about legacy C code?

€ Mark stack as non-executable

¢ Randomize stack location or encrypt return address
on stack by XORing with random string

e Attacker won't know what address to use in his or her
string

® Static analysis of source code to find overflows

¢ Run-time checking of array and buffer bounds
e StackGuard, libsafe, many other tools

® Black-box testing with long strings

Non-Executable Stack

s NS AN A IS s WS RS SFENG 5 WA S A A b SNE 0 RN S NS b IS

¢ NX bit on every Page Table Entry
e AMD Athlon 64, Intel P4 “Prescott”

e Code patches marking stack segment as non-executable
exist for Linux, Solaris, OpenBSD

® Some applications need executable stack
e For example, LISP interpreters

¢ Does not defend against return-to-libc exploits

e QOverwrite return address with the address of an existing
library function (can still be harmful)

¢ ...nor against heap and function pointer overflows

¢ ...nor changing stack internal variables (auth
flag, ...)

Run-Time Checking: StackGuard

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

® Embed “canaries” in stack frames and verify their
integrity prior to function return
e Any overflow of local variables will damage the canary

Caller’s stack frame

Caller’s stack frame

® Choose random canary string on program start
o Attacker can’t guess what the value of canary will be

¢ Terminator canary: “\0”, newline, linefeed, EOF
e String functions like strcpy won't copy beyond “\0”

StackGuard Implementation

BN W TR T e e T R
ut (% [y ut 2fal S . i Suled

¢ StackGuard requires code recompilation

¢ Checking canary integrity prior to every function
return causes a performance penalty
e For example, 8% for Apache Web server

@ PointGuard also places canaries next to function
pointers and setjmp buffers
e Worse performance penalty

¢ StackGuard can be defeated!
e Phrack article by Bulba and Kil3r

Defeating StackGuard (Sketch)

¢ Idea: overwrite pointer used by some strcpy and
make it point to return address (RET) on stack
o strcpy will write into RET without touching canary!

buf dst - sfp | RET

H_J
Suppose program contains strcpy(dst,buf) Retum execution to

BadPointer, %ttack code &RET - sfp RET

BadPointer here

Overwrite destination of strcpy with RET position / strcpy will copy

Run-Time Checking: Libsafe
¢ Dynamically loaded library
@ Intercepts calls to strcpy(dest,src)

e Checks if there is sufficient space in current stack
frame

|frame-pointer — dest| > strlen(src)
o If yes, does strcpy; else terminates application

PointGuard

(BNE Js MR S ARG R S SN s RO S NS R S SN s RS NSO R S NG e R S NSO R S SN e R S NSO R S AN

¢ Attack: overflow a function pointer so that it points
to attack code

¢ Idea: encrypt all pointers while in memory
o Generate a random key when program is executed

e Each pointer is XORed with this key when loaded from
memory to registers or stored back into memory
— Pointers cannot be overflown while in registers

¢ Attacker cannot predict the target program’s key

e Even if pointer is overwritten, after XORing with key it will
dereference to a “random” memory address

Normal Pointer Dereference

1. Fetch pointer value

2. Access data referenced by pointer

. R

[Cowan]

._.: ™ T e " NS

-t

Y
Pointer
Memory 0x1234 Data
0x1234

1. Fetch pointer value

CPU

2. Access attack code referenced

by corrupted pointer

Corruptad pointer Attack
— 0x1234 | Data
Memory D30T ol
0x1234 0x1340

PointGuard Dereference

[Cowan]

Memo ry 0x7239

Memory 02|

1. Fetch pointer Ox1234 2. Access data referenced by pointer
value Decrypt
Y
Encrypted pointer
i Data
0x1234
Decrypts to CPU
fandoim value 2. Access random address;
_ 0x9786 segmentation fault and crash
1. Fetch pointer
value Decrypt
Corruptad pointer Attack T
Data ac
code
0x1234 0x1340 0x9786

e st
¢ SERNE A NS RS DERNGE s o AN S NS e WO

F T l u
N P TG T VN s Nl P T T VAT N R A Lt T AN BE o e AR Lt T RN AL e Y et

Y Y
N ot - Y a SN TR N SR Y SERNE

¢ Generate “random” inputs to program

e Sometimes conforming to input structures (file
formats, etc)

¢ See if program crashes
o If crashes, found a bug
e Bug may be exploitable

@ Surprisingly effective

® Now standard part of development lifecycle, e.g.,
for IE

V I b . I .ty A I . d D . I
I TG S S S I P T TING D W TTNG D A e WO G D S I TN R D T

i ! N S LN : N & e - *

¢ What do you do if you've found a security problem
in a real system?
¢ Say
e IM client?
e Electronic voting machine?
e ATM machine?
e Hospital drug (morphine) pump

