Secure Programming
with Static Analysis

Jacob West
jacob@fortify.com

S - | 8 D 3 E R =2 " r = W = L W | = B 2 E S = U X (S TR TR T -

Xy 5B DE- HEG W lll NE NgE “ER

= i) i < = WD I E B L]

S AEXEN BPE DxAEKY REQ) BE HELON 43E WUNY =5 el ma8AE HH

& UHT BEc d EHE

- = - i F D D E D =] - e o O E E F R

L]
-
L

= = o= i = L i W Ei B L Wl &= = O 3 E o = L 3 T

¥
!
5
1

SENEM BT SndEERYT RESL BE HESMN L3R WUNKY WG
bl P D Ll Ra=1 3 TN - T-N ¥, el kT

WUNY B DE- HHGHNE ENs TTE NN “EBR
A D s T m-S-lhia A He Az = of—=

Unforeseen
Consequences

ECE 2EHEY B0E Sl EXKYT RRa22 o L0E WL H#ead H

=HEG W HEW TE A8 wB

N o = 1) I

(v #E DE-E
= i A = J

I AER

Y i = e R = . W F s N E o =

I_H..ﬂ SxEEEYT FE4L BE _.I,.E.? oL

(] = X =i E ol b= I e N s
WUNKY HE Dl Iﬂm_.u.l_ ll

BLE AN @& &ge

BE MELSN L3FE WUNY RE DRk

= b= == W = L Wi & i = L i I

>,
=
>
D
o
-
O
=

v oy — = LE AEma ==

i HHEHG E HEM T

' TE A AN ER
TR T ; == B o= s r
Cf I N-T-N ¥, el Rl 1:

ECE = RELS EE HMEBUMN L3E HUNLY KRB

i - o i DO E S = "y

Connected
e Dependable

EwW o > E R =) = = = ¥ = L Wi F W

B=ain A He Azh =@ OoP—=

Software Systems that are

LNy #E

e OhCh &

'« Ubiquitous

1

T 0

E

ECE AR BPE O r@ERKT ANOL B NESN LHE ALUNY BB DX Bl

g = b= == ¥ = L il &F & | i = 3 | = W = iJd I = Wl o o W o

Software Security Today

e The line between secure/insecure Is often subtle
- Many seemingly non-security decisions affect security

e Small problems can hurt a lot

e Smart people make dumb mistakes

~ As a group, programmers tend to make the same
security mistakes over and over

e \We need non-experts to get security right

FORTIFY

TO ENGINEER
[S HUMAN

The Role of Failu fIDg

Success Is foreseeing failure.
— Henry PetroskKi

Non-functional Security Failures

Generic Mistakes
» Input validation
> Memory safety (buffer overflow)
» Handling errors and exceptions
~ Maintaining privacy

Common Software Varieties
~» Web applications
» Network services / SOA
~ Privileged programs

F SOFTWARE

Buffer Overflow

MSDN sample code for function DirSpec:
int main(int argc, char *argv[]) {
char DirSpec[MAX PATH + 1];

printf ('Target dir is %s.\n", argv[1l]);
strncpy (DirSpec, argv|[l], strlen(argv|[l])+1l);

FEOFTWARE

Cross-Site Scripting

<C:1 f Foundations of

test=""${param.sayHello}"> AJ ax

Hello ${param.name}!

</c:1f>
“We never intended the code that's In
there to actually be production-
ready code”
- Ryan Asleson
FORTIFY

Reliving Past Mistakes

e Cross-site scripting looks more and more like

buffer overflow

Buffer Overflow Cross-site Scripting

e Allows arbitrary code execution e
Exploit is hard to write o
Easy mistake to make in C/C++ o
Well known problem for decades e

Allows arbitrary code execution
Exploit is easy to write

Easy mistake to make

Well known problem for a decade

[FORTIFY

HEn e
.
.
.

:

=

T
)

G

-

=

.
.
-
-
®
)
:
.
.

.

.
<
&
-

:
.
.
L

N

-

-
-
o
.
=
.
.
.
.
.
.
.
-
.
.
.
.
-
.

S

i

od for

-
-

-

-

dd
=
=

.

.
.
.
.
.
.
.
.
- .
.
.
,
.
.
P

-

o

.
.

%

1.
o
-
=

-

%
e

-

2
-
-
-

=
.

SOFTWARE

FORTIFY

-

0;
(@)
B ey
=
o

Test Your Way Out
* Pen test

Fix It Later

e Code as usual.

» Build a better firewall
* More walls don'’t help
when the software is
 Security team can't

keep up.

N
(&]
+—
(b}
c
@)
=
(@]
(b}
=
(B}
©

-

.

-
-

-
IS
.
-

-

g T—
...
.
...
.
...
.
<
s
3
s
3
s
iy
s
]
-
]
-
]
-
.
-
.
-
.
5y
s
3
4t
;3
4
3
4
TP @
.

:
S
.
.
.
..
.
..
.
-
.
.
...
.
...
.
...
.
.
-
.
...
.
-
.
.
...
.
...
-
.
.
.
St .wan.
m%%%&f

-

:
ey
)

R

.

.

:
.
.
..
.
.
)
.
s

o=
-

- .

T

eryone is going

e Not ev

e

*::

.

.
-
.

.
e

«
-

-
-

fee

Try Harder
requires

and work hard.

"
LS
)
S
0
-

<
(@)
-
O

=

Security in the Development Lifecycle

v
SECURITY EXTERMAL CODE REVIEW PEMETRATIONMN
S E‘ U RI I Y REQUIREMENTS REVIEW (TOOLS) TESTING
AEBUSE RiskE RISE=BASED Risk SECURITY
CASES AMALYSS SECURITY TESTS AN’AI.‘I’SII UF‘EMTIIDNF

PR A .

RECHIREMENTS ARZHITECTURE TEST PLANS CODE TESTS AND FEEDBACK FROM,
AMD USE CASES AMD DESIGH TEST RESULTY THE FIELD

GARY McGRAW

Foreword by Dan Geer

THE SECURITY
DEVELOPMENT

-

quuirsrranl.s Design Implementation Werification > Rel 'ﬁ> Suppot &JS‘> «

S L

- :

- -
- -

-

-
-
.

-

.
-

- e

&
-

&
-

.
-

-

-
-
-
-
-
-
-
-
-
-
e

::§
-
-
-
-
-
-
-

-
e
.
e

.
-
-

.

-

-

.
-

e

i

.

-
-
-

e
-
-
-
-

M
e

:
:;%
-
-
-
-
-

-

-
%ﬁ
%ﬁ
e

-
-
.
.
-
.
-
.
-
.
e
=

.
-
-
e
-
-
-

-

L
.
e

.
L

:
P
b

i

*%

|] | |] | |] | |] |
-

e
.
. =
. -
. -
e -]
- . . .
== =
e = S e o
. .
.) -
e gt s
.
o 1
-

.

-
-

-

—
-
.

-
-

-
-
-

—
-
-

-

S

-
-

-
.
-

-
.

-

=

-
-

*
*
M
e
B
B
SR
e e

e
-
-
-

-
-

T
-

.

—
.

-

.

e
.
=

-
-
-
-

-
-

.
L

.
..

-
o
-

-
o

¢§§;
-
i
s
=

o
i
=
e
e
o
e
e

i

|

D
O
>\
&)
)

y
—
)
-
)
=
Q.

O
)
>
)
A
)
e
]
=
>\
i
-
i)
&)
D
0]

FORTIFY

e Intrusion Detection
e Penetration Testing

e Firewalls

Security in the Development Lifecycle

1

]
]
”§§
.

.

-

mﬁm
-
:***
o
i
-
.
e
-

i i R

- i DEm e
- B - i Eme
-

=

i

- o

-
.

T
-
-
-
-
-
-
-
-

-

-

*

-

=
-

-
-

-
o

- e — e

—
:*g
-
-
.
-
:*g
-
-
.
.

-

-
-

-

§

e -
- -

.

—
.
.
-

.
-
-
-
-
-

e
- -
e
-

-

-
%
-

-
.
-
-

- -

.
-

%*%*:i;*%* -

-
-
-

e
-

.
e e
- - -
-

-

-

-
-

e
.

-

.

.

-

=
*

o
.
-
-
-
-
-
-
-
-

-
-
-
-

-
-
-

.
o
.
-
-
-
-
-
.
-
-
%%
.
-
.
-
|
-
-
-
-
-
-
-
o
o

L

—
.

i
-
-
-
-
-

i
o
.
=
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
-
o
o
o

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
o
o

-
e
... . .

-
-

e

-
.

.
e

-
-
-
.

.
.
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
::I:
E;éf
.

-
-

.

L

i
-
-
-
-
-
-
-
-
-

.
E*g
-
-
-
-
-
-
-
-
-
-
-
-
.
-
-
.
-
-
.
.
.
.
.
.
o

=

.
=
.
L
E*g
.
-
-
-
-
.
-
-
.
-
-
.
-
-
.
.
-
-
.
.
.
.
.
.

o
EHE
-
-
e
T
e
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
0
0
0
0
0
.
.

i

-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
.
.
-
.
.
.
.
.

.
-

.

Bl

.

e

-

-
-

-
-

.

-
-
-
-
-
-
-
-
-
-
-
-
-

-] i i R S
]

.
. .
- .
- .
- .
-

-

.

.
=
=
=

-
-

.

-
-
-
-
.
-
=
=
-
-
.
-

i

*
-
@:«',;*
.
=
e
.
.

M
.
-
-
-

-
-

.

.

-
.
|
=
i
.

-
i
-
-

-
-

-
.
-
-
-
-

L
-
-
-
G

e

-
-
-
-
-
-

.

-
=
o
-

£
-
-

.

)
nadd
it
o
o
o
o

-
i
A
.
i
-

-
o

L

-

-

=

.
.
"i’fi’:ﬁ?’ﬂ%
-
i

-

-

-
-
-

M*”
:I?&
g
-
0
i
L
=
.
.
.
.
.
.
.
.
.
.
.
.
.
.
-
-
=
-
.
.
.
.
.
- -
|
-
|
i
G

-
.
L
-
-
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
:»x%x
-
.
.
-

-
-
=

-
-
-
L
o
-
:***
:***
:***
:***
:***
EM
-
-
:***
:***
:***
EM
-
-
EM
-
.
e

-

.

-
-
:***
:***
:***
:***
:***
EM
-
.
:***
:***
:***
EM
-
-
EM
-
.
e

.
.

T
.
.

.
-
- e

e

.
-
-
o
-

=
.
%g:
.

e
mT
e .
. - -
.. B = = |

L] | . e

—
°
.

=
-
-

-
:*g
.
-
-
-
-
3:;:
-
-
-
-
-
-
-
-
-
%
-
-

=

s
.
e
Bl

L

Eg«-
-
-
.
-
-
-
.
-
g
-
-
-
-
.

- -

.
.
i

e
-

-
”“i@
-
-

-

- -
o
o

.
it

N:

-
i

.
.
.
.
.
-

-

-

-

-

-
-

.
-

i

:E;f

.

»x:",,::»y
«,%

.

.

-

.

:E;f
::f:
e
-
e
.
.
.
:***
:***
:***

[
e
-
-
-
-

i

e Risk Assessment
e Code Review
e Security Testing

B
=
s
=
s
=
e
-

Effective security from non-experts
'h!ifﬁgillii!'!'ll==”\f‘

FEOFTWARE

Introduction

Static Analysis: The Big Picture
Inside a Static Analysis Tool
Static Analysis in Practice
What Next?

o
[]
@
[]
@
e Parting Thoughts

FORTIFY

Static Analysis: The Big Picture

[FORTIFY

Static Analysis Defined

e Analyze code without executing it

e Able to contemplate many more possibilities than
you could execute with conventional testing

e Doesn’'t know what your code Is supposed to do
e Must be told what to look for

[FORTIFY

The Many Faces of Static Analysis

Type checking

Style checking

Program understanding

Program verification / Property checking
Bug finding

Security review

FORTIFY

Why Static Analysis Is Good for Security

Fast compared to manual code review

Fast compared to testing

Complete, consistent coverage

Brings security knowledge with it

Makes review process easier for non-experts

FEOFTWARE

Prehistoric Static Analysis Tools

Flawfinde

FORTIFY

SOFTWARE

Prehistoric Static Analysis Tools

Glorified grep
(+) Good
~ Help security experts audit code
> A place to collect info about bad coding practices

(-) Bad
- NOT BUG FINDERS
~ Not helpful without security expertise

Advanced Static Analysis Tools: Prioritization

int main(int argc, char* argvl]) {

char bufl][1024];

char buf2[1024];

char* shortString = "a short string';
strcpy(bufl, shortString); /7* eh. */
strcpy(buf2, argv[0]); /> 111 >/

FORTIFY

What You Won't Find

e Architecture errors
~ Microscope vs. telescope

e Bugs you're not looking for
> Bug categories must be predefined

e System administration mistakes
e User mistakes

FORTIFY

Security vs. Quality

e Bug finding tools focus on high confidence results
» Bugs are cheap (plentiful)
~ Bug patterns, bug idioms
~ False alarms are killers
e Security tools focus on high risk results
2 More human input required
~ The bugs you miss are the killers

[FORTIFY

Inside a Static Analysis Tool

[FORTIFY

Under the Hood

: DI' "
ﬂ __Eﬁ_ﬁ_ﬂlﬂj
..Solrce B2
Tote. | K) ——= YO —— %
Build Perform Present
Model Analysis Resulis

L/

Security
Knowledge

FORTIFY

Critical Attributes

e Language support
» Understands the relevant languages/dialects
e Analysis algorithms
~ Uses the right techniques to find and prioritize issues
e Capacity
~ Abllity to gulp down millions of lines of code
e Rule set
- Modeling rules, security properties
e Results management
2 Allow human to review results

= Prioritization of issues

» Control over what to report
FORTIFY

Building a Model

e Front end looks a lot like a compiler

e Language support
> One language/compiler is straightforward
» Lots of combinations is harder

e Could analyze compiled code...
~ Everybody has the binary
~ No need to guess how the compiler works
> No need for rules

e ..but
~ Decompilation can be difficult
~ Loss of context hurts. A lot.

» Remediation requires mapping back to source anyway
e —

Analysis Technigues

e Taint propagation
e Trace potentially tainted data through the
program

e Report locations where an attacker could take
advantage of a vulnerable function or construct

buTf =_getlnputFroNetwork():

copyBuffer(newBuff, buff);

exec (BeWBUXT) ; (command injection)

e Many other approaches, no one right answer

FORTIFY

Capacity: Scope vs. Performance

Klocwork Fortify
Overnight 9 @
Ounce
E Coverity
: FindBugs ®
S Coffee break
5
9
i O
Blink of an eye o MSanalyze
ITS4 Flawfinder
RATS
Line Function Module Program
Analysis Scope
FORTIFY

Only Two Ways to Go Wrong

e False positives
~ Incomplete/inaccurate model
» Conservative analysis

e False negatives
v Incomplete/inaccurate model
> Missing rules
» “Forgiving” analysis

The tool that
cried “wolf!”

Missing a
detail can Kill.

AN

Rules: Dataflow

e Specify
o Security properties
~ Behavior of library code

buff = getlnputFromNetwork();
copyBuffer(newBuff, buff);
exec(newBuff);

e Three rules to detect the command injection vulnerability
1) getlnputFromNetwork() postcondition:
return value i1s tainted
2) copyBuffer(argl, arg2) postcondition:
argl array values set to arg2 array values
3) exec(arg) precondition:
arg must not be tainted
FORTIFY
T ———

Rules: Control Flow

e Look for dangerous sequences

e Example: Double-free vulnerability initial

while ((node = *ref) 1= NULL) {

*ref = node->next; (other
free(node); operations) free(x)
IT (Munchain(ref)) {
break;
+
}
if (node = 0) { (other
free(node); operations)

return UNCHAIN_FAIL;

Rules: Control Flow

e Look for dangerous sequences

e Example: Double-free vulnerability initial

while ((node = *ref) 1= NULL) { state

*ref = node->next; (other

free(node); Operations) *free (X)
IT (Munchain(ref)) {

<: break;
ks

if (node = 0) { (other
free(node); operations)
return UNCHAIN_ FAIL;

Rules: Control Flow

e Look for dangerous sequences
e Example: Double-free vulnerability

initial

while ((node = *ref) 1= NULL) { state

*ref = node->next; (other

free(node); Operations) *free (X)
IT (Munchain(ref)) {

<: break;
ks

2.

if (node !'= 0) { (other

= - operations)
ret CHAIN_FAIL;

Displaying Results

e Must convince programmer that there’s a bug in the code

e Different interfaces for different scenarios:
» Security auditor parachutes in to 2M LOC

~ Programmer reviews own code s
_ ucks.
~ Programmers share code review

responsibilities [ok |
e Interface is just as important as analysis \\/—/
e Don’t show same bad result twice
e Try this at home: Java Open Review ﬁ
http.//opensource.fortify.com Bad interface >

FORTIFY

Your Code

Static Analysis in Practice

[FORTIFY

Two Ways to Use the Tools

e Analyze completed programs
> Fancy penetration test. Bleah.
» Results can be overwhelming
> Most people have to start here
> Good motivator

e Analyze as you write code
> Run as part of build
» Nightly/weekly/milestone
> Fix as you go

FORTIFY

Typical Objections and Their True Meanings

Objection Translation

“It takes too long to run.” “I think security is optional, so |
don’t want to do it.”

“It has too many false positives.” | “I think security is optional, so |
don’t want to do it.”

“It doesn’t fit with the way | “l think security Is optional, so |
work.” don’'t want to do it.”

[FORTIFY

Adopting a Static Analysis Tool

1) Some culture change required
~ More than just another tool

» Often carries the banner for software security
program

~ Pitfall: the tool doesn’t solve the problem by itself

2) Define the playing field
~ Choose specific objectives
> Build a gate

3) Do training up front
~ Software security training is paramount

» Tool training is helpful too
FORTIFY
_—————————————

Adopting a Static Analysis Tool

4) Start small
» Do a pilot rollout to a friendly dev group
~ Build on your success

5) Go for the throat
> Tools detect lots of stuff. Turn most of it off.
» Focus on easy-to-understand, highly relevant problems.

6) Appoint a champion
- Make sure there is a point person on the dev team
» Choose a developer who knows a little about everything

FORTIFY
e

Adopting a Static Analysis Tool

/) Measure the outcome
» Keep track of tool findings
» Keep track of outcome (issues fixed)

8) Make It your own
» Investigate customization
» Map tool against internal security standards.

» Best case scenario Is cyclic:
» The tool reinforces coding guidelines
» Coding guidelines are written with automated checking in mind
9) The first time around Is the worst
» Budget 2x typical cycle cost

2 Typical numbers: 10% of time for security,
20% for the first time FORTIFY
I

e ?7? Defect Density = Vulnerability Density ??
e NOT A GOOD RISK BAROMETER

e Good for answering guestions such as
> Which bugs do we write most often?
~» How much remediation effort is required?

10

1101
=
oy Viastion () Pammsrres Ylamgsgmrrel i1 . i
'\-::tl!.: I_..III-\-:: "'\.r{::'
(=E

Per ol lisues Foviewed

0% - -
53..\.'\'\.

What Next?

[FORTIFY

Seven Pernicious Kingdoms

e Catalog, define, and categorize common mistakes
e http://www.fortify.com/vulncat

Input validation and e Error handling

representation e Code quality
e API abuse e Encapsulation
e Security features * Environment

e Time and state

FORTIFY’

Security Testing

e Most widely used security testing techniques are
about controllability

» Fuzzing (random input)
» Shooting dirty data (input that often causes trouble)
e A different take: improve observability
> Instrument code to observe runtime behavior:
Fortify Tracer

e Benefits
» Security-oriented code coverage
~ Vastly improved error reporting
» Finds more bugs

e Uses rule set from static analysis tool! FORTIFY
-/

Detecting Attacks at Runtime

e If you can find bugs, can you fix them?

e Instrument program, watch it run:
Fortify Defender

More context than external systems

—lexible response: log, block, etc

_ow performance overhead is a must
Potential to detect misuse In addition to bugs

®

[FORTIFY

Parting Thoughts

[FORTIFY

=t

) Protocols

The Buck Stops With Your Code

e Security problems everywhere you look
» Languages, libraries, frameworks, etc.

e Right answer
» Better languages, libraries, frameworks, etc.

e Realistic answer
> Build secure programs out of insecure pieces

e I Algorithms

' Protocols

—

l.ibraries -

e Mistakes happen. Plan for them.

e Security Is now part of programming

e For code auditors: tools make code review efficient
e For programmers: tools bring security expertise

po]

Critical components of a good tool:
> Algorithm

~ Rules

~ Interface

~ Adoption Plan

[FORTIFY

FEIR [

WSOFTWARE

Brian Chess
brian@fortify.com

Jacob West
jacob@fortify.com

Foreword by Gary McGraw

SECURE

PROGRAMMING

S WITH -

STATIC ANALYSIS

vy
e

Q\ .

L. i
w .\

Brian Chess & Jacob West

