
Applied Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2008)

Goals for Today

 Asymmetric cryptography
 Project 2 out

• Informal checkpoint: Feb 22 (11:59pm)
• Full submission: Feb 29 (11:59pm)

Advantages of Public-Key Crypto

Confidentiality without shared secrets
• Very useful in open environments
• No “chicken-and-egg” key establishment problem

– With symmetric crypto, two parties must share a secret before
they can exchange secret messages

– Caveats to come

Authentication without shared secrets
• Use digital signatures to prove the origin of messages

Reduce protection of information to protection of
authenticity of public keys
• No need to keep public keys secret, but must be sure that

Alice’s public key is really her true public key

Disadvantages of Public-Key Crypto

Calculations are 2-3 orders of magnitude slower
• Modular exponentiation is an expensive computation
• Typical usage: use public-key cryptography to establish a

shared secret, then switch to symmetric crypto
– We’ll see this in IPSec and SSL

Keys are longer
• 1024 bits (RSA) rather than 128 bits (AES)

Relies on unproven number-theoretic assumptions
• What if factoring is easy?

– Factoring is believed to be neither P, nor NP-complete

• (Of course, symmetric crypto also rests on unproven
assumptions)

Authenticity of Public Keys

?

Problem: How does Alice know that the public key
 she received is really Bob’s public key?

private key

Alice
Bob

public key

Bob’s key

Distribution of Public Keys

Public announcement or public directory
• Risks: forgery and tampering

Public-key certificate
• Signed statement specifying the key and identity

– sigAlice(“Bob”, PKB)

Common approach: certificate authority (CA)
• Single agency responsible for certifying public keys
• After generating a private/public key pair, user proves his

identity and knowledge of the private key to obtain CA’s
certificate for the public key (offline)

• Every computer is pre-configured with CA’s public key

Hierarchical Approach

Single CA certifying every public key is impractical
 Instead, use a trusted root authority

• For example, Verisign
• Everybody must know the public key for verifying root

authority’s signatures

Root authority signs certificates for lower-level
authorities, lower-level authorities sign certificates
for individual networks, and so on
• Instead of a single certificate, use a certificate chain

– sigVerisign(“UW”, PKUW), sigUW(“Alice”, PKA)

• What happens if root authority is ever compromised?

Many Challenges

Many Challenges

Alternative: “Web of Trust”

Used in PGP (Pretty Good Privacy)
 Instead of a single root certificate authority, each

person has a set of keys they “trust”
• If public-key certificate is signed by one of the “trusted”

keys, the public key contained in it will be deemed valid
Trust can be transitive

• Can use certified keys for further certification

Alice
Friend of Alice

Friend of friend
Bob

sigAlice(“Friend”, Friend’s key)

sigFriend(“FoaF”, FoaF’s key)

I trust
Alice

X.509 Authentication Service

 Internet standard (1988-2000)
Specifies certificate format

• X.509 certificates are used in IPSec and SSL/TLS
Specifies certificate directory service

• For retrieving other users’ CA-certified public keys
Specifies a set of authentication protocols

• For proving identity using public-key signatures
Does not specify crypto algorithms

• Can use it with any digital signature scheme and hash
function, but hashing is required before signing

X.509 Certificate

Added in X.509 versions 2 and 3 to address
usability and security problems

hash

Certificate Revocation

Revocation is very important
Many valid reasons to revoke a certificate

• Private key corresponding to the certified public key has
been compromised

• User stopped paying his certification fee to this CA and
CA no longer wishes to certify him

• CA’s certificate has been compromised!
Expiration is a form of revocation, too

• Many deployed systems don’t bother with revocation
• Re-issuance of certificates is a big revenue source for

certificate authorities

Certificate Revocation Mechanisms

Online revocation service
• When a certificate is presented, recipient goes to a special

online service to verify whether it is still valid
– Like a merchant dialing up the credit card processor

Certificate revocation list (CRL)
• CA periodically issues a signed list of revoked certificates

– Credit card companies used to issue thick books of canceled credit
card numbers

• Can issue a “delta CRL” containing only updates

Question: does revocation protect against forged
certificates?

X.509 Certificate Revocation List

Because certificate serial numbers
 must be unique within each CA, this is

 enough to identify the certificate

hash

X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(message))

Encrypt, then sign for authenticated encryption
• Goal: achieve both confidentiality and authentication
• E.g., encrypted, signed password for access control

Does this work?

Attack on X.509 Version 1

Alice Bob

“Alice”, sigAlice(TimeAlice, “Bob”,

 encryptPublicKey(Bob)(password))

 Receiving encrypted password under signature does not
mean that the sender actually knows the password!

Attacker extracts encrypted
password and replays it
under his own signature

“Charlie”, sigCharlie(TimeCharlie, “Bob”,

 encryptPublicKey(Bob)(password))

fresh random challenge C

Authentication with Public Keys

Alice Bob

PRIVATE
KEY

PUBLIC
KEY

“I am Alice”

sigAlice(C)

Verify Alice’s signature on c

1. Only Alice can create a valid signature
2. Signature is on a fresh, unpredictable challenge

Potential problem: Alice will sign anything

Early Version of SSL (Simplified)

Alice Bob

encryptPublicKey(Bob)(“Alice”, KAB)

encryptKAB(“Alice”, sigAlice(NB))

fresh session key

encryptKAB(NB)

fresh random number

 Bob’s reasoning: I must be talking to Alice because…
• Whoever signed NB knows Alice’s private key… Only Alice knows her

private key… Alice must have signed NB… NB is fresh and random
and I sent it encrypted under KAB… Alice could have learned NB only
if she knows KAB… She must be the person who sent me KAB in the
first message...

Breaking Early SSL

Alice

encryptPK(Charlie)(“Alice”,KAC)

encKAC
(“Alice”, sigAlice(NB))

Charlie
(with an evil side)

Bob

 encryptPK(Bob)(“Alice”,KCB)

encryptKCB
(NB)

encryptKAC
(NB)

encryptKCB
(“Alice”, sigAlice(NB))

Charlie uses his legitimate conversation with Alice
to impersonate Alice to Bob
• Information signed by Alice is not sufficiently explicit

Programming Project #2
Out today, Monday, Feb 11
Due Friday, Feb 29, 11:59pm

• Submit via Catalyst system

 Teams of up to three people
• New teams OK (old teams also OK)

Basic idea: Implement a “Man-in-the-Middle” attack
against SSL

Recall Security and Privacy Code of Ethics form
Based on Dan Boneh’s CS255 project (Stanford)

• Slides: http://crypto.stanford.edu/~dabo/cs255/proj2_pres.pdf

Overview

MITM attack against SSL
• Not at network layer (not re-writing packets, etc)
• At SSL Proxy Layer, in Java

– Networking
– SSL
– Certificates

Password-based authentication for MITM server
• Hashed, salted passwords
• Password file encrypted with an authenticated

encryption scheme.

Overview

Normal SSL
• SSL encrypted data routed like normal TCP/IP over

Internet

Client SSL webserver

Internet

Proxy Server

Browser connects to proxy
Proxy connects to web server and forwards

between the two

Internet

Client

Proxy

“Man in the Middle”

 Instead of forwarding encrypted data between the
two hosts, the proxy will set up two different SSL
connections
• Proxy <--> Remote Server

– Normal SSL client connection to remote site

• Proxy <--> Browser
– SSL server connection to the browser, using its own certificate,

with some data cloned from the remote hosts’ certificate
– If browser accepts this fake certificate, the proxy has access

to the data in the clear!

What we provided

Basic Proxy Server setup
• Parses CONNECT request and sets up a connection

between client and remote server

Basic Admin Server/Client
• Server listens for connections on plain socket and

parses out username/password/command that client
sends

Basic Admin Server/Client

Goal: Experience in adding security features to an
application
• Secure connection between admin client and proxy

server using SSL
• Password based authentication for client

– Secure storage of password file (authenticated encryption)
– Passwords stored, hashed, using public and private salt

Proxy Server

Already listens for browser CONNECT requests and
sets up the needed SSL connections

You should
• Understand the connections being made
• Obtain the remote server certificate from the remote

SSL connection
• Copy the relevant fields and sign a forged certificate

using your CA cert (from your keystore); use IAIK
• Modify the code creating the client SSL connection to

use the newly forged certificate

Signing Certificate

Build a self-signed certificate for the proxy server
(the proxy server’s “CA” certificate)
• keytool -genkey -keyalg RSA
• Store this in a JKS keystore for use by your proxy

server
• Use it for signing your programmatically generated

certs
• Your proxy pretends to be the CA

Submit a keystore with your project

Generating Certs “On the Fly”

Not easy to generate certificates programmatically
using standard Java libraries

 Instead, use the IAIK-JCE library
• iaik.x509.X509Certificate (class)

iaik.x509.X509Certificate

To convert from a java certificate:
• new X509Certificate(javaCert.getEncoded());

Signing
• cert.sign(AlgorithmID.sha256withRSAEncryption,

issuerPk);

See iaik.asn1.structures.Name
• For extracting info (e.g., common name) from the

certificate’s distinguished name (cert.getSubjectDN())

You might also read
• http://java.sun.com/j2se/1.5.0/docs/guide/security/

cert3.html

Managing Certs and SSL Sockets
Use the KeyStore class for

• Loading certificates from file (e.g., your CA certificate)
• Storing programmatically generated certificates

Use SSLContext class for setting up certificates to
be used with SSLServerSocket
• Create a certificate
• Load into new KeyStore
• Init a KeyManagerFactory with new KeyStore
• Init SSLContext with new KeyManagerFactory and provided

“TrustEveryone” TrustManager

Use SSLContext for creating SSLSocketFactories
See MITMSSLSocketFactory.java

Admin Server

Already listens for client connections and parses
the data sent using plain sockets

You should
• Modify code to use SSL sockets (see the proxy server

code for examples)
• Implement authentication for the transmitted username

and password
• Implement required admin commands

– Shutdown
– Stats

Password file
Need to store a file containing usernames, salts,

and hashed passwords
• Both public and secret salts (aka pepper)

Should be stored encrypted with an authenticated
encryption scheme
• I recommend Encrypt-then-MAC
• Maybe AES in CTR mode to Encrypt, and HMAC-SHA1

to MAC
• But be careful about security!!

Username Salt Hashed password

Alice S H(Pwd||S||P)

Bob

Password File Utility

You should add a utility for creating these
password files

Simple method:
• Make a class to take a file and a list of usernames and

passwords, and covert it to a password file.

Configuring Firefox (under OS X,
similar for Linux)

Configuring Firefox (under OS X,
similar for Linux)

When going to https://www.cs.washington.edu

When going to https://www.cs.washington.edu

Identical in sample code
(uses same cert for all

websites)

Sample code causes this second warning

Your job - new certificates, avoid second warning

Possible Problems
You should be able to start up the proxy and

connect to it “out of the box”
• After you create your keystore with “keytool”

 If you are having problems
• Is someone else trying to use your machine and that port?

(Default 8001.)
– Try a different port on the command line

• Firewall problems
– Try to telnet to the needed ports (8001/8002/...)

• Try running your browser on the same machine, and setting
the proxy as “localhost”

Course mailing list: Great place to share
knowledge

