CSE 484 (Winter 2008)

Applied Cryptography

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials .

Goals for Today

4 Symmetric
Reminder: Midterm on Friday. (Closed book.)
« Contents up through the material for today
* Not as hard as last year’s midterm.
* Make sure you understand the core concepts so far in
this course:
— Threat modeling
— Software security
* Problems
* Defensive approaches
— Symmetric cryptography

« Components, definitions, security properties, classic
problems

Which Property Do We Need?

#® UNIX passwords stored as hash(password)
* One-wayness: hard to recover password

@ Integrity of software distribution
* Weak collision resistance

« But software images are not really random... maybe need
full collision resistance

Auction bidding
« Alice wants to bid B, sends H(B), later reveals B
« One-wayness: rival bidders should not recover B

« Collision resistance: Alice should not be able to change
her mind to bid B such that H(B)=H(B")

Common Hash Functions

4 MD5
* 128-bit output
« Designed by Ron Rivest, used very widely
« Collision-resistance broken (summer of 2004)
4 RIPEMD-160
 160-bit variant of MD5
@ SHA-1 (Secure Hash Algorithm)
« 160-bit output
« US government (NIST) standard as of 1993-95
— Also the hash algorithm for Digital Signature Standard (DSS)

Basic Structure of SHA-1 (Skip)

Spit message nto 512-5 locks

160 100
v LN

I
vy
16051 buffer (5 egisters)
Intialzed with magic values

Very simiar to a block cipher,
with message tself use k& —— it round s e gl
as the key for each round buffer o the resut of 4 rounds

One Step of SHA-1 (80 steps total) (Skip)

How Strong Is SHA-1?

#Every bit of output depends on every bit of input
« Very important property for collision-resistance

@ Brute-force inversion requires 2160 ops, birthday
attack on collision resistance requires 28° ops

Some very recent weaknesses (2005)
« Collisions can be found in 263 ops

Authentication Without Encryption

fnd #
L S—

message, MAC(KEY,message)

" message =

Alice Bob
Recomputes MAC and verifies whether it is
equal to the MAC attached to the message

Integrity and authentication: only someone who knows KEY can
compute MAC for a given message

HMAC

Construct MAC by applying a cryptographic hash
function to message and key
« Could also use encryption instead of hashing, but...
« Hashing is faster than encryption in software
« Library code for hash functions widely available
 Can easily replace one hash function with another
« There used to be US export restrictions on encryption
#Invented by Bellare, Canetti, and Krawczyk (1996)
« HMAC strength established by cryptographic analysis
Mandatory for IP security, also used in SSL/TLS

Structure of HMAC

ipad

‘Secret key padded o
=

Block s of embedded hash function

o e Embedded hash function
(Gtrengeh of HMAC rees on

srengh o tis nash function)

K* “opad

Black box's can use this HIAC
construction ith any hash function
oy is s mportant?)

“Amplify” key material
(get two keys out of one)

Alic
K

- c M/invz\’.
K K

Achieving Both Privacy and Integrity

Authenticated encryption scheme

Recall: Often desire both privacy and integrity. (For SSH,
SSL, IPsec, etc.)

e Bob
K
Key
Message
Ciphertext Adversary

Some subtleties! Encrypt-and-MAC

Natural approach for authenticated encryption: Combine an encryption
scheme and a MAC.

EK Km DKe,Km
Return M if
valid

[Encryptxe [MACin] [Decryptee [Verifykn }mna/zmana
Ciphertext Ciphertext

But insecure! [BN, Kra]

Assume Alice sends messages:

I FIRE I I DON'T FIRE l [FIRE I
1
(o | [1ace | [ormee] [ace] [ovmee | [t]
< T Cy T2 Cs Ts

If T, =T, then M, = M
Adversary learns whether two plaintexts are equal.

Especially problematic when Mi, M, ... take on only a small
number of possible values.

3
2|
5
B
5
5|
5|
A
LB R Y FAB TR KA
The Secure Shell (SSH) protocol is designed to provide:

® Secure remote logins.

® Secure file transfers.

Where security includes:
® Protecting the privacy of users’ data.
® Protecting the integrity of users’ data.

OpenSSH is included in the default installations of OS X and
many Linux distributions.

Authenticated encryption in SSH

EKe,Km M

Maintained internally; not
transmitted

I
|

[T)

Data to be

| < [] conercn pacec

Then the tags Ti and T2 will be different with high probability.

Results of [BN00,Kra01]

[Ercryoec] [(M]T]

Ciphertext C
Ciphertext C Ciphertext C

Encrypt-then-MAC | MAC-then-Encrypt | Encrypt-and-MAC

Privacy Strong (CCA) Weak (CPA) Insecure

Incegrity Strong (CTXT) Weak (PTXT) Weak (PTXT)

Basic Problem

D=

Alice Bob

Given: Everybody knows Bob’s public key
Only Bob knows the corresponding private key

Goals: 1. Alice wants to send a secret message to Bob
2. Bob wants to authenticate himself

Applications of Public-Key Crypto

@ Encryption for confidentiality
 Anyone can encrypt a message
— With symmetric crypto, must know secret key to encrypt
* Only someone who knows private key can decrypt
* Key management is simpler (maybe)
— Secret is stored only at one site: good for open environments
Digital signatures for authentication
« Can “sign” a message with your private key
Session key establishment
« Exchange messages to create a secret session key
* Then switch to symmetric cryptography (why?)

Diffie-Hellman Protocol (1976)

Alice and Bob never met and share no secrets
Public info: p and g
« pis a large prime number, g is a generator of Z,*
=-Z,*={1,2 ... p-1}; Va€Z;* 3i such that a=g' mod p
— Modular arithmetic: numbers “wrap around” after they reach p

;

Gt
G5
@ modp It
Alice Bob
Compute k=(g¥)*=g" mod p Compute k=(g¥)Y=g" mod p

Why Is Diffie-Hellman Secure?

Discrete Logarithm (DL) problem:
given g* mod p, it's hard to extract x
« There is no known efficient algorithm for doing this
« This is not enough for Diffie-Hellman to be secure!
Computational Diffie-Hellman (CDH) problem:
given g and @, it's hard to compute g~/ mod p
e ... unless you know x or y, in which case it's easy
Decisional Diffie-Hellman (DDH) problem:
given g and @, it's hard to tell the difference
between g* mod pand g" mod p Where r is random

Properties of Diffie-Hellman

@ Assuming DDH problem is hard, Diffie-Hellman
protocol is a secure key establishment protocol
against passive attackers
« Eavesdropper can't tell the difference between established

key and a random value
 Can use new key for symmetric cryptography
— Approx. 1000 times faster than modular exponentiation

Diffie-Hellman protocol (by itself) does not provide

authentication

