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Goals for Today

 TOCTOU
 Integer Overflow, Casting
 Randomness
 Timing Attacks

 Defensive Mechanisms

 Software Development Design Principles

TOCTOU

 TOCTOU == Time of Check to Time of Use

 Goal:  Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat 

and open (and access files he or she shouldn’t)

int openfile(char *path) { 
struct stat s; 
if (stat(path, &s) < 0) 

return -1; 
if (!S_ISRREG(s.st_mode)) { 

error("only allowed to regular files!"); 
return -1; 

} 
return open(path, O_RDONLY); 

}

Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of 
input into buf

char buf[80]; 
void vulnerable() { 

int len = read_int_from_network(); 
char *p = read_string_from_network(); 
if (len > sizeof buf) { 

error("length too large, nice try!"); 
return; 

} 
memcpy(buf, p, len); 

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)



Integer Overflow and Implicit Cast

What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result:  Allocate a 4-byte buffer, then read a lot of 

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network(); 
char *buf; 
buf = malloc(len+5); 
read(fd, buf, len);

Randomness issues

Many applications (especially security ones) 
require randomness

 “Obvious” uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting 

machine)
• Shuffle cards (for an online gambling site)

C’s rand() Function
 C has a built-in random function:  rand()

unsigned long int next = 1; 

/* rand:  return pseudo-random integer on 0..32767 */ 

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

} 

/* srand:  set seed for rand() */

void srand(unsigned int seed) { 

next = seed;

} 

 Problem:  don’t use rand() for security-critical 
applications!
• Given a few sample outputs, you can predict 

subsequent ones



Problems in Practice
One institution used (something like) rand() to 

generate passwords for new users
• Given your password, you could predict the passwords 

of other users

 Kerberos (1988 - 1996)
• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon 

Kerberos for authentication
Online gambling websites

• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?
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Big news...  CNN, etc..

Obtaining Pseudorandom Numbers

 For security applications, want “cryptographically 
secure pseudorandom numbers”

 Libraries include:
• OpenSSL
• CryptoAPI (Microsoft)

 Linux:
• /dev/random
• /dev/urandom

 Internally:
• Pool from multiple sources (interrupt timers, 

keyboard, ...)
• Physical sources (radioactive decay, ...)

Timing Attacks

 Assume there are no “typical” bugs in the 
software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing 
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against

Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise 

• RealPwd and CandidatePwd are both 8 characters long

 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE



Attacker Model
PwdCheck(RealPwd, CandidatePwd)  // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some 
standard interface

 Naive:  Try all 2568 = 18,446,744,073,709,551,616 
possibilities

 Better:  Time how long it takes to reject a 
CandidatePasswd.  Then try all possibilities for first 
character, then second, then third, ....
• Total tries:  256*8 = 2048

Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products


