
Software Security: Attacks,
Defenses, and Design Principles

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials ...

CSE 484 (Winter 2008)

Goals for Today

 TOCTOU
 Integer Overflow, Casting
 Randomness
 Timing Attacks

 Defensive Mechanisms

 Software Development Design Principles

TOCTOU

 TOCTOU == Time of Check to Time of Use

 Goal: Open only regular files (not symlink, etc)
 Attacker can change meaning of path between stat

and open (and access files he or she shouldn’t)

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)

return -1;
if (!S_ISRREG(s.st_mode)) {

error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}

Integer Overflow and Implicit Cast

 If len is negative, may copy huge amounts of
input into buf

char buf[80];
void vulnerable() {

int len = read_int_from_network();
char *p = read_string_from_network();
if (len > sizeof buf) {

error("length too large, nice try!");
return;

}
memcpy(buf, p, len);

}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

What if len is large (e.g., len = 0xFFFFFFFF)?
 Then len + 5 = 4 (on many platforms)
 Result: Allocate a 4-byte buffer, then read a lot of

data into that buffer.

(from www-inst.eecs.berkeley.edu—implflaws.pdf)

size_t len = read_int_from_network();
char *buf;
buf = malloc(len+5);
read(fd, buf, len);

Randomness issues

Many applications (especially security ones)
require randomness

 “Obvious” uses:
• Generate secret cryptographic keys
• Generate random initialization vectors for encryption

Other “non-obvious” uses:
• Generate passwords for new users
• Shuffle the order of votes (in an electronic voting

machine)
• Shuffle cards (for an online gambling site)

C’s rand() Function
 C has a built-in random function: rand()

unsigned long int next = 1;

/* rand: return pseudo-random integer on 0..32767 */

int rand(void) {

next = next * 1103515245 + 12345;

return (unsigned int)(next/65536) % 32768;

}

/* srand: set seed for rand() */

void srand(unsigned int seed) {

next = seed;

}

 Problem: don’t use rand() for security-critical
applications!
• Given a few sample outputs, you can predict

subsequent ones

Problems in Practice
One institution used (something like) rand() to

generate passwords for new users
• Given your password, you could predict the passwords

of other users

 Kerberos (1988 - 1996)
• Random number generator improperly seeded
• Possible to trivially break into machines that rely upon

Kerberos for authentication
Online gambling websites

• Random numbers to shuffle cards
• Real money at stake
• But what if poor choice of random numbers?

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Images from http://www.cigital.com/news/index.php?pg=art&artid=20

Big news... CNN, etc..

Obtaining Pseudorandom Numbers

 For security applications, want “cryptographically
secure pseudorandom numbers”

 Libraries include:
• OpenSSL
• CryptoAPI (Microsoft)

 Linux:
• /dev/random
• /dev/urandom

 Internally:
• Pool from multiple sources (interrupt timers,

keyboard, ...)
• Physical sources (radioactive decay, ...)

Timing Attacks

 Assume there are no “typical” bugs in the
software
• No buffer overflow bugs
• No format string vulnerabilities
• Good choice of randomness
• Good design

 The software may still be vulnerable to timing
attacks
• Software exhibits input-dependent timings

 Complex and hard to fully protect against

Password Checker

 Functional requirements
• PwdCheck(RealPwd, CandidatePwd) should:

– Return TRUE if RealPwd matches CandidatePwd
– Return FALSE otherwise

• RealPwd and CandidatePwd are both 8 characters long

 Implementation (like TENEX system)

 Clearly meets functional description

PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

Attacker Model
PwdCheck(RealPwd, CandidatePwd) // both 8 chars

for i = 1 to 8 do

if (RealPwd[i] != CandidatePwd[i]) then

return FALSE

return TRUE

 Attacker can guess CandidatePwds through some
standard interface

 Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities

 Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
• Total tries: 256*8 = 2048

Other Examples

 Plenty of other examples of timings attacks
• AES cache misses

– AES is the “Advanced Encryption Standard”
– It is used in SSH, SSL, IPsec, PGP, ...

• RSA exponentiation time
– RSA is a famous public-key encryption scheme
– It’s also used in many cryptographic protocols and products

