CSE 484 (Winter 2008)

Software Security: Attacks,
Defenses, and Design Principles

Tadayoshi Kohno

Thanks to Dan Boneh, Dieter Gollmann, John Manferdelli, John Mitchell, Vitaly
Shmatikov, Bennet Yee, and many others for sample slides and materials .

Goals for Today

4 TOCTOU

Integer Overflow, Casting
4 Randomness

Timing Attacks

Defensive Mechanisms

Software Development Design Principles

TOCTOU

TOCTOU == Time of Check to Time of Use

int openfile(char *path) {
struct stat s;
if (stat(path, &s) < 0)
return -1;
if (!S_ISRREG(s.st_mode)) {
error("only allowed to regular files!");
return -1;

}
return open(path, O_RDONLY);

}
Goal: Open only regular files (not symlink, etc)

Attacker can change meaning of path between stat
and open (and access files he or she shouldn't)

Integer Overflow and Implicit Cast

char buf[80];
void vulnerable() {
int len = read_int_from network();
char *p = read_string_from network();
if (len > sizeof buf) {
error("length too large, nice try!");
return;
}
memcpy (buf, p, len);
}

void *memcpy(void *dst, const void * src, size_t n);

typedef unsigned int size_t;

If len is negative, may copy huge amounts of
input into buf

(from wwweinst.eecs berkeley.edu—implflaws.pdf)

Integer Overflow and Implicit Cast

size_t len = read_int_from network();
char *buf;

buf = malloc(len+5);

read(fd, buf, len);

What if len is large (e.g., len = OXFFFFFFFF)?
Then len + 5 = 4 (on many platforms)

Result: Allocate a 4-byte buffer, then read a lot of
data into that buffer.

(from i implfiaws.pdf)

Randomness issues

Many applications (especially security ones)
require randomness
4 "Obvious” uses:
* Generate secret cryptographic keys
« Generate random initialization vectors for encryption
Other “non-obvious” uses:
* Generate passwords for new users

« Shuffle the order of votes (in an electronic voting
machine)
« Shuffle cards (for an online gambling site)

C’s rand() Function

C has a built-in random function: rand()
unsigned long int next = 1;
/* rand: return pseudo-random integer on 0..32767 */
int rand(void) {
next = next * 1103515245 + 12345;
return (unsigned int)(next/65536) % 32768;
}
/* srand: set seed for rand() */
void srand(unsigned int seed) {
next = seed;

}
@ Problem: don't use rand() for security-critical
applications!
« Given a few sample outputs, you can predict
subsequent ones

ABOUT US | CONTACT | ADVERTISE | SUBSCRIBE | SOURCE CODE | CURRENT PRINT ISSUE
NEWSLETTERS | RESOURCES | BLOGS | PODCASTS | CAREERS

Windows/.NET

July 22, 2001

Randomness and the Netscape
Browser

How secure is the World Wide Web?

Ian Goldberg and David Wagner

No one was more surprised than Netscape Communications when a pair of

computer-science students broke the Netscape encryption scheme. Ian and
David describe how they attacked the popular Web browser and what they
found out.

Problems in Practice

One institution used (something like) rand() to
generate passwords for new users

* Given your password, you could predict the passwords
of other users

Kerberos (1988 - 1996)
« Random number generator improperly seeded
* Possible to trivially break into machines that rely upon
Kerberos for authentication
Online gambling websites
* Random numbers to shuffle cards
* Real money at stake
* But what if poor choice of random numbers?

8 Word o Action

Halp
Socstions

.

3
[Fo0 | Cheor Bouts)

Images from igital. i =artBartid=20

Reset Cancel Game Pasamelers
it |
YauPosion [T =]
Sarco
ol B

Images from igi =artBartid=20

Images from igi =artBartid=20

son

Big news... CNN, etc..

Obtaining Pseudorandom Numbers

For security applications, want “cryptographically
secure pseudorandom numbers”
Libraries include:
* OpenSSL
* CryptoAPI (Microsoft)
Linux:
* /dev/random
o /dev/urandom

Internally:
* Pool from multiple sources (interrupt timers,
keyboard, ...)

* Physical sources (radioactive decay, ...)

Timing Attacks

Assume there are no “typical” bugs in the
software
« No buffer overflow bugs
* No format string vulnerabilities
* Good choice of randomness
* Good design
The software may still be vulnerable to timing
attacks
* Software exhibits input-dependent timings
Complex and hard to fully protect against

Password Checker

Functional requirements
* PwdCheck(RealPwd, CandidatePwd) should:
— Return TRUE if RealPwd matches CandidatePwd
— Return FALSE otherwise
« RealPwd and CandidatePwd are both 8 characters long
¢ Implementation (like TENEX system)
PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to8do
if (RealPwdli] = CandidatePwad[i]) then
return FALSE
return TRUE
Clearly meets functional description

Attacker Model

PwdCheck(RealPwd, CandidatePwd) // both 8 chars
fori=1to8do
if (RealPwd[i] != CandidatePwd][i]) then
return FALSE
return TRUE
Attacker can guess CandidatePwds through some
standard interface
Naive: Try all 2568 = 18,446,744,073,709,551,616
possibilities
Better: Time how long it takes to reject a
CandidatePasswd. Then try all possibilities for first
character, then second, then third,
 Total tries: 256*8 = 2048

Other Examples

Plenty of other examples of timings attacks
* AES cache misses
— AES is the “Advanced Encryption Standard”
— Itis used in SSH, SSL, IPsec, PGP, ...
* RSA exponentiation time
— RSA is a famous public-key encryption scheme
— It's also used in many cryptographic protocols and products

