
Web Browser Security
Charlie Reis

Guest Lecture - CSE 490K - 5/24/2007

Is Browsing Safe?

Web Mail
Movie Rentals

?
Search Results

Change
Address

Install
Malware

Send
Spam

2

Browser Security Model

• Pages are isolated from each
other, sometimes

• “Same origin” policy:

• Page can only communicate
with pages and servers from
the same origin

• Applies to cookies, cross-page
scripts, AJAX requests

A
.com

A
.com

B
.com

3

Subverting the Browser

• Attackers are exploiting browser weaknesses

1. Cross-site scripting (XSS)

2. Cross-site request forgery (CSRF)

3. Browser vulnerabilities

4

1. XSS / Script Injection

5

XSS / Script Injection

• Placing script code on someone else’s site

• Gives attacker control over content

• Difficult to prevent in general

• Widespread threat

• MySpace, Yahoo Mail exploited

• Most reported vulnerability

Script

6

e.g., MySpace / Samy

• Viewing Samy’s user profile ran script code:

• Added Samy as one of your “heroes”

• Copied the code to your profile

• Spread to 1 million pages in 24 hours

7

e.g., Yahoo Mail / Yamanner

• Email with embedded script code

• Accessed your address book

• Sent addresses to a server

• Forwarded itself to your contacts

8

What damage can XSS do?

• Invade privacy of visitors

• Violate integrity of page

• Deny availability to a server

9

Invade Privacy

• XSS can leak data to attacker,
despite same origin policy

• e.g., Encode data in URL of
a requested image

• Steal cookies to log in as user

• Leak any information on page
(passwords, credit cards, etc.)

Attacker
Web Server

10

Violate Integrity

• Scripts can change any
content on a page

• Falsify info

• Make page appear faulty

• Ask user for more
personal information

Script

11

Deny Availability

• Distributed Denial of Service

• Turn browsers into bots

• Attacker can choose any
machine as target

• Large impact for
compromising popular sites
or advertisers

Victim

12

Types of Script Injection

1. Stored XSS

2. Reflected XSS

3. DOM-Based XSS

4. Third party scripts

5. Bookmarklets

13

1. Stored XSS
• Hide script in server’s database

• Any visitor to page will run the
injected code

• Many sites display user input

• Blogs, wikis, discussion
boards, social networks

• Try to filter out script code, but
not always successful

DB

14

2. Reflected XSS

• Some sites parse input from URL

• Attackers can construct links
that cause scripts to run

• Must trick users into following
these links (e.g., phishing emails)

http://nytimes.com/auth/login?URI=">><script> </script>...

15

3. DOM-Based XSS

• Like Reflected XSS, except that URL parsing is done on
client, not server

• Attack code never appears in HTML sent over the network
(only in URL)

<script>
var pos = document.URL.indexof(“name=”)+5;
var name = document.URL.substring(pos, document.URL.length);
</script>

16

4. Third party scripts
• Script files from any origin can be

embedded in a page
(not part of same-origin policy)

• Ad servers

• Mashups (e.g., Google Maps)

• Web sites must delegate trust

• Malicious or compromised
third party can launch attack

Advertiser
Web Server

17

5. Bookmarklets

• Bookmarklet: a bookmarked JavaScript URL

• Runs in context of user’s current page

• Useful for stripping ads, web development

• Could be used for phishing or spying on browsing habits

javascript:alert(‘hello world’);

18

How to prevent XSS?

• Option 1: block JavaScript

• Could disable scripts in browser
(but too many sites rely on them today)

• Could whitelist known pages with NoScript
(but they might be vulnerable to XSS)

19

Input Validation

• Server must filter all scripts from user input

• Must find all script tags, event handlers,
script URLs, scripts in stylesheets, etc.

• Must handle encoded input (%3C...)

• Can’t just block ‘<’ and ‘>’ in many cases

20

Bug in phpBB’s filter

<b c=”>” onmouseover=” “ x=”<b “>text...

Filter <b c= >

Browser <b c= onmouseover= x= >

• Discussion board allowed some HTML tags
(e.g., , <i>)

• Didn’t filter all scripts

21

Convenience vs Security

• Most browsers are tolerant of syntax errors

• Malformed input can get past a filter and
then run in the browser

• Samy worm on MySpace:

‘java
script:eval(...)’

22

Research Proposals

• Find bugs on server side [Xie, Huang]

• Static or dynamic analysis, fault injection

• Limit damage on client [Vogt, Ismail]

• Taint analysis (prevent information leaks)

• Connection blocking

• Script whitelists [Jim]

• Only run scripts with valid hashes

23

2. Cross-Site Request
Forgery (CSRF)

24

CSRF Attacks
• Browser includes cookies on

all requests to a site

• Attacker can make requests
with user’s credentials

• Post messages, transfer
money, delete data

• Netflix vuln: change account
settings

• Gmail vuln: steal contact list

Browser

Trusted Untrusted

25

Preventing CSRF

• Embed a fresh nonce
in each form

• Check for the nonce on
every user request

• Forged requests will have
the cookie but not the
nonce

<form>
<input type=hidden
 name=nonce value=23562>
<input ...>
...
</form>

26

3. Browser Vulnerabilities

27

Browser Vulnerabilities

• Pages can exploit vulns. to
run arbitrary code
(“drive-by downloads”)

• Discovered frequently
(e.g., Windows .ANI bug)

• Patches aren’t always
installed quickly
(e.g., testing in enterprises)

Operating System

Browser

28

Research Proposals

• Run web browser in virtual machine
[Tahoma, SpyProxy]

• Can roll back after any damage

• Filter exploits of known vulnerabilities
[BrowserShield]

• Tricky: must insert runtime checks into all
JavaScript code

29

Summary

• Same-origin policy isn’t always sufficient

• XSS, CSRF, Browser Vulnerabilities

• Web developers must be vigilant

• Changes to browsers could help
(part of my research)

30

